Browse Source

!11826 some words misspelled,it has modified.

From: @shuzigood
Reviewed-by: @wuxuejian
Signed-off-by: @wuxuejian
tags/v1.2.0-rc1
mindspore-ci-bot Gitee 4 years ago
parent
commit
0da4c5549f
7 changed files with 24 additions and 23 deletions
  1. +4
    -4
      model_zoo/official/cv/yolov3_darknet53/eval.py
  2. +1
    -1
      model_zoo/official/cv/yolov3_darknet53/scripts/run_eval.sh
  3. +1
    -1
      model_zoo/official/cv/yolov3_darknet53/scripts/run_eval_gpu.sh
  4. +1
    -1
      model_zoo/official/cv/yolov3_darknet53/src/convert_weight.py
  5. +2
    -2
      model_zoo/official/cv/yolov3_darknet53/src/yolo.py
  6. +1
    -1
      model_zoo/official/cv/yolov3_darknet53/src/yolo_dataset.py
  7. +14
    -13
      model_zoo/official/cv/yolov3_darknet53/train.py

+ 4
- 4
model_zoo/official/cv/yolov3_darknet53/eval.py View File

@@ -87,7 +87,7 @@ class DetectionEngine:

def _nms(self, predicts, threshold):
"""Calculate NMS."""
# conver xywh -> xmin ymin xmax ymax
# convert xywh -> xmin ymin xmax ymax
x1 = predicts[:, 0]
y1 = predicts[:, 1]
x2 = x1 + predicts[:, 2]
@@ -111,8 +111,8 @@ class DetectionEngine:
intersect_area = intersect_w * intersect_h
ovr = intersect_area / (areas[i] + areas[order[1:]] - intersect_area)

indexs = np.where(ovr <= threshold)[0]
order = order[indexs + 1]
indexes = np.where(ovr <= threshold)[0]
order = order[indexes + 1]
return reserved_boxes

def write_result(self):
@@ -179,7 +179,7 @@ class DetectionEngine:

x_top_left = x - w / 2.
y_top_left = y - h / 2.
# creat all False
# create all False
flag = np.random.random(cls_emb.shape) > sys.maxsize
for i in range(flag.shape[0]):
c = cls_argmax[i]


+ 1
- 1
model_zoo/official/cv/yolov3_darknet53/scripts/run_eval.sh View File

@@ -58,7 +58,7 @@ cp ../*.py ./eval
cp -r ../src ./eval
cd ./eval || exit
env > env.log
echo "start infering for device $DEVICE_ID"
echo "start inferring for device $DEVICE_ID"
python eval.py \
--data_dir=$DATASET_PATH \
--pretrained=$CHECKPOINT_PATH \


+ 1
- 1
model_zoo/official/cv/yolov3_darknet53/scripts/run_eval_gpu.sh View File

@@ -58,7 +58,7 @@ cp ../*.py ./eval
cp -r ../src ./eval
cd ./eval || exit
env > env.log
echo "start infering for device $DEVICE_ID"
echo "start inferring for device $DEVICE_ID"
python eval.py \
--device_target="GPU" \
--data_dir=$DATASET_PATH \


+ 1
- 1
model_zoo/official/cv/yolov3_darknet53/src/convert_weight.py View File

@@ -39,7 +39,7 @@ def build_network():


def convert(weights_file, output_file):
"""Conver weight to mindspore ckpt."""
"""Convert weight to mindspore ckpt."""
params = build_network()
weights = load_weight(weights_file)
index = 0


+ 2
- 2
model_zoo/official/cv/yolov3_darknet53/src/yolo.py View File

@@ -59,7 +59,7 @@ class YoloBlock(nn.Cell):
Args:
in_channels: Integer. Input channel.
out_chls: Interger. Middle channel.
out_chls: Integer. Middle channel.
out_channels: Integer. Output channel.
Returns:
@@ -108,7 +108,7 @@ class YOLOv3(nn.Cell):
Args:
backbone_shape: List. Darknet output channels shape.
backbone: Cell. Backbone Network.
out_channel: Interger. Output channel.
out_channel: Integer. Output channel.
Returns:
Tensor, output tensor.


+ 1
- 1
model_zoo/official/cv/yolov3_darknet53/src/yolo_dataset.py View File

@@ -45,7 +45,7 @@ def has_valid_annotation(anno):
# if all boxes have close to zero area, there is no annotation
if _has_only_empty_bbox(anno):
return False
# keypoints task have a slight different critera for considering
# keypoints task have a slight different criteria for considering
# if an annotation is valid
if "keypoints" not in anno[0]:
return True


+ 14
- 13
model_zoo/official/cv/yolov3_darknet53/train.py View File

@@ -131,9 +131,7 @@ def conver_training_shape(args):
return training_shape


def train():
"""Train function."""
args = parse_args()
def network_init(args):
devid = int(os.getenv('DEVICE_ID', '0'))
context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True,
device_target=args.device_target, save_graphs=True, device_id=devid)
@@ -145,26 +143,21 @@ def train():
init("nccl")
args.rank = get_rank()
args.group_size = get_group_size()
# select for master rank save ckpt or all rank save, compatiable for model parallel
# select for master rank save ckpt or all rank save, compatible for model parallel
args.rank_save_ckpt_flag = 0
if args.is_save_on_master:
if args.rank == 0:
args.rank_save_ckpt_flag = 1
else:
args.rank_save_ckpt_flag = 1

# logger
args.outputs_dir = os.path.join(args.ckpt_path,
datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S'))
args.logger = get_logger(args.outputs_dir, args.rank)
args.logger.save_args(args)

if args.need_profiler:
from mindspore.profiler.profiling import Profiler
profiler = Profiler(output_path=args.outputs_dir, is_detail=True, is_show_op_path=True)

loss_meter = AverageMeter('loss')

def parallel_init(args):
context.reset_auto_parallel_context()
parallel_mode = ParallelMode.STAND_ALONE
degree = 1
@@ -173,6 +166,17 @@ def train():
degree = get_group_size()
context.set_auto_parallel_context(parallel_mode=parallel_mode, gradients_mean=True, device_num=degree)

def train():
"""Train function."""
args = parse_args()
network_init(args)
if args.need_profiler:
from mindspore.profiler.profiling import Profiler
profiler = Profiler(output_path=args.outputs_dir, is_detail=True, is_show_op_path=True)

loss_meter = AverageMeter('loss')
parallel_init(args)

network = YOLOV3DarkNet53(is_training=True)
# default is kaiming-normal
default_recurisive_init(network)
@@ -182,7 +186,6 @@ def train():
args.logger.info('finish get network')

config = ConfigYOLOV3DarkNet53()

config.label_smooth = args.label_smooth
config.label_smooth_factor = args.label_smooth_factor

@@ -202,7 +205,6 @@ def train():
args.ckpt_interval = args.steps_per_epoch

lr = get_lr(args)

opt = Momentum(params=get_param_groups(network),
learning_rate=Tensor(lr),
momentum=args.momentum,
@@ -281,7 +283,6 @@ def train():
if i == 10:
profiler.analyse()
break

args.logger.info('==========end training===============')




Loading…
Cancel
Save