| @@ -21,23 +21,26 @@ import mindspore.common.dtype as mstype | |||
| from mindspore.train.serialization import load_checkpoint, export | |||
| from src.finetune_eval_model import BertCLSModel, BertSquadModel, BertNERModel | |||
| from src.finetune_eval_config import optimizer_cfg, bert_net_cfg | |||
| from src.finetune_eval_config import bert_net_cfg | |||
| from src.bert_for_finetune import BertNER | |||
| from src.utils import convert_labels_to_index | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| parser = argparse.ArgumentParser(description='Bert export') | |||
| parser.add_argument("--device_id", type=int, default=0, help="Device id") | |||
| parser.add_argument('--use_crf', type=str, default="false", help='Use cfg, default is false.') | |||
| parser.add_argument('--downstream_task', type=str, choices=["NER", "CLS", "SQUAD"], default="NER", | |||
| help='at present,support NER only') | |||
| parser.add_argument('--num_class', type=int, default=41, help='The number of class, default is 41.') | |||
| parser.add_argument("--batch_size", type=int, default=16, help="batch size") | |||
| parser.add_argument('--label_file_path', type=str, default="", help='label file path, used in clue benchmark.') | |||
| parser.add_argument('--ckpt_file', type=str, required=True, help='Bert ckpt file.') | |||
| parser.add_argument('--output_file', type=str, default='Bert.air', help='bert output air name.') | |||
| parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') | |||
| args = parser.parse_args() | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args.device_id) | |||
| label_list = [] | |||
| with open(args.label_file_path) as f: | |||
| for label in f: | |||
| @@ -57,7 +60,7 @@ else: | |||
| if __name__ == '__main__': | |||
| if args.downstream_task == "NER": | |||
| if args.use_crf.lower() == "true": | |||
| net = BertNER(bert_net_cfg, optimizer_cfg.batch_size, False, num_labels=number_labels, | |||
| net = BertNER(bert_net_cfg, args.batch_size, False, num_labels=number_labels, | |||
| use_crf=True, tag_to_index=tag_to_index) | |||
| else: | |||
| net = BertNERModel(bert_net_cfg, False, number_labels, use_crf=(args.use_crf.lower() == "true")) | |||
| @@ -71,10 +74,10 @@ if __name__ == '__main__': | |||
| load_checkpoint(args.ckpt_file, net=net) | |||
| net.set_train(False) | |||
| input_ids = Tensor(np.zeros([optimizer_cfg.batch_size, bert_net_cfg.seq_length]), mstype.int32) | |||
| input_mask = Tensor(np.zeros([optimizer_cfg.batch_size, bert_net_cfg.seq_length]), mstype.int32) | |||
| token_type_id = Tensor(np.zeros([optimizer_cfg.batch_size, bert_net_cfg.seq_length]), mstype.int32) | |||
| label_ids = Tensor(np.zeros([optimizer_cfg.batch_size, bert_net_cfg.seq_length]), mstype.int32) | |||
| input_ids = Tensor(np.zeros([args.batch_size, bert_net_cfg.seq_length]), mstype.int32) | |||
| input_mask = Tensor(np.zeros([args.batch_size, bert_net_cfg.seq_length]), mstype.int32) | |||
| token_type_id = Tensor(np.zeros([args.batch_size, bert_net_cfg.seq_length]), mstype.int32) | |||
| label_ids = Tensor(np.zeros([args.batch_size, bert_net_cfg.seq_length]), mstype.int32) | |||
| if args.downstream_task == "NER" and args.use_crf.lower() == "true": | |||
| input_data = [input_ids, input_mask, token_type_id, label_ids] | |||