|
|
|
@@ -139,7 +139,7 @@ TEST_F(TestPoolingGradFp32, AvgPoolingKernelGradFp32) { |
|
|
|
lite::Tensor x_tensor(TypeId::kNumberTypeFloat32, dim_x); |
|
|
|
x_tensor.set_data(input1_data); |
|
|
|
|
|
|
|
std::vector<lite::Tensor *> inputs = {&dy_tensor, &x_tensor}; |
|
|
|
std::vector<lite::Tensor *> inputs = {&x_tensor, &x_tensor, &dy_tensor}; |
|
|
|
|
|
|
|
auto output_data = new float[output_data_size]; |
|
|
|
ASSERT_NE(output_data, nullptr); |
|
|
|
@@ -209,7 +209,7 @@ TEST_F(TestPoolingGradFp32, AvgPoolingBatchGradFp32) { |
|
|
|
lite::Tensor x_tensor(TypeId::kNumberTypeFloat32, dim_x); |
|
|
|
x_tensor.set_data(input1_data); |
|
|
|
|
|
|
|
std::vector<lite::Tensor *> inputs = {&dy_tensor, &x_tensor}; |
|
|
|
std::vector<lite::Tensor *> inputs = {&x_tensor, &x_tensor, &dy_tensor}; |
|
|
|
|
|
|
|
std::vector<int> dim_dx({3, 28, 28, 3}); |
|
|
|
lite::Tensor dx_tensor(TypeId::kNumberTypeFloat32, dim_dx); |
|
|
|
@@ -282,7 +282,7 @@ TEST_F(TestPoolingGradFp32, AvgPoolGradStride2Fp32) { |
|
|
|
lite::Tensor out_tensor(TypeId::kNumberTypeFloat32, dim_x); |
|
|
|
ASSERT_EQ(out_tensor.MallocData(), 0); |
|
|
|
float *out_data = static_cast<float *>(out_tensor.MutableData()); |
|
|
|
std::vector<lite::Tensor *> inputs = {&yt_tensor, &x_tensor}; |
|
|
|
std::vector<lite::Tensor *> inputs = {&x_tensor, &yt_tensor, &yt_tensor}; |
|
|
|
std::vector<lite::Tensor *> outputs = {&out_tensor}; |
|
|
|
|
|
|
|
lite::InnerContext context; |
|
|
|
@@ -349,7 +349,7 @@ TEST_F(TestPoolingGradFp32, AvgPoolGradStride3Fp32) { |
|
|
|
ASSERT_EQ(out_tensor.MallocData(), 0); |
|
|
|
auto out_data = static_cast<float *>(out_tensor.MutableData()); |
|
|
|
|
|
|
|
std::vector<lite::Tensor *> inputs = {&yt_tensor, &x_tensor}; |
|
|
|
std::vector<lite::Tensor *> inputs = {&x_tensor, &yt_tensor, &yt_tensor}; |
|
|
|
std::vector<lite::Tensor *> outputs = {&out_tensor}; |
|
|
|
|
|
|
|
lite::InnerContext context; |
|
|
|
|