| @@ -30,6 +30,7 @@ | |||||
| #include "dataset/kernels/image/random_crop_and_resize_op.h" | #include "dataset/kernels/image/random_crop_and_resize_op.h" | ||||
| #include "dataset/kernels/image/random_crop_op.h" | #include "dataset/kernels/image/random_crop_op.h" | ||||
| #include "dataset/kernels/image/random_horizontal_flip_op.h" | #include "dataset/kernels/image/random_horizontal_flip_op.h" | ||||
| #include "dataset/kernels/image/random_horizontal_flip_bbox_op.h" | |||||
| #include "dataset/kernels/image/random_resize_op.h" | #include "dataset/kernels/image/random_resize_op.h" | ||||
| #include "dataset/kernels/image/random_rotation_op.h" | #include "dataset/kernels/image/random_rotation_op.h" | ||||
| #include "dataset/kernels/image/random_vertical_flip_op.h" | #include "dataset/kernels/image/random_vertical_flip_op.h" | ||||
| @@ -37,6 +38,7 @@ | |||||
| #include "dataset/kernels/image/resize_bilinear_op.h" | #include "dataset/kernels/image/resize_bilinear_op.h" | ||||
| #include "dataset/kernels/image/resize_op.h" | #include "dataset/kernels/image/resize_op.h" | ||||
| #include "dataset/kernels/image/uniform_aug_op.h" | #include "dataset/kernels/image/uniform_aug_op.h" | ||||
| #include "dataset/kernels/image/bounding_box_augment_op.h" | |||||
| #include "dataset/kernels/data/fill_op.h" | #include "dataset/kernels/data/fill_op.h" | ||||
| #include "dataset/kernels/data/slice_op.h" | #include "dataset/kernels/data/slice_op.h" | ||||
| #include "dataset/kernels/data/type_cast_op.h" | #include "dataset/kernels/data/type_cast_op.h" | ||||
| @@ -343,6 +345,11 @@ void bindTensorOps1(py::module *m) { | |||||
| .def(py::init<std::vector<std::shared_ptr<TensorOp>>, int32_t>(), py::arg("operations"), | .def(py::init<std::vector<std::shared_ptr<TensorOp>>, int32_t>(), py::arg("operations"), | ||||
| py::arg("NumOps") = UniformAugOp::kDefNumOps); | py::arg("NumOps") = UniformAugOp::kDefNumOps); | ||||
| (void)py::class_<BoundingBoxAugOp, TensorOp, std::shared_ptr<BoundingBoxAugOp>>( | |||||
| *m, "BoundingBoxAugOp", "Tensor operation to apply a transformation on a random choice of bounding boxes.") | |||||
| .def(py::init<std::shared_ptr<TensorOp>, float>(), py::arg("transform"), | |||||
| py::arg("ratio") = BoundingBoxAugOp::defRatio); | |||||
| (void)py::class_<ResizeBilinearOp, TensorOp, std::shared_ptr<ResizeBilinearOp>>( | (void)py::class_<ResizeBilinearOp, TensorOp, std::shared_ptr<ResizeBilinearOp>>( | ||||
| *m, "ResizeBilinearOp", | *m, "ResizeBilinearOp", | ||||
| "Tensor operation to resize an image using " | "Tensor operation to resize an image using " | ||||
| @@ -357,6 +364,11 @@ void bindTensorOps1(py::module *m) { | |||||
| (void)py::class_<RandomHorizontalFlipOp, TensorOp, std::shared_ptr<RandomHorizontalFlipOp>>( | (void)py::class_<RandomHorizontalFlipOp, TensorOp, std::shared_ptr<RandomHorizontalFlipOp>>( | ||||
| *m, "RandomHorizontalFlipOp", "Tensor operation to randomly flip an image horizontally.") | *m, "RandomHorizontalFlipOp", "Tensor operation to randomly flip an image horizontally.") | ||||
| .def(py::init<float>(), py::arg("probability") = RandomHorizontalFlipOp::kDefProbability); | .def(py::init<float>(), py::arg("probability") = RandomHorizontalFlipOp::kDefProbability); | ||||
| (void)py::class_<RandomHorizontalFlipWithBBoxOp, TensorOp, std::shared_ptr<RandomHorizontalFlipWithBBoxOp>>( | |||||
| *m, "RandomHorizontalFlipWithBBoxOp", | |||||
| "Tensor operation to randomly flip an image horizontally, while flipping bounding boxes.") | |||||
| .def(py::init<float>(), py::arg("probability") = RandomHorizontalFlipWithBBoxOp::kDefProbability); | |||||
| } | } | ||||
| void bindTensorOps2(py::module *m) { | void bindTensorOps2(py::module *m) { | ||||
| @@ -13,6 +13,8 @@ add_library(kernels-image OBJECT | |||||
| random_crop_and_resize_op.cc | random_crop_and_resize_op.cc | ||||
| random_crop_op.cc | random_crop_op.cc | ||||
| random_horizontal_flip_op.cc | random_horizontal_flip_op.cc | ||||
| random_horizontal_flip_bbox_op.cc | |||||
| bounding_box_augment_op.cc | |||||
| random_resize_op.cc | random_resize_op.cc | ||||
| random_rotation_op.cc | random_rotation_op.cc | ||||
| random_vertical_flip_op.cc | random_vertical_flip_op.cc | ||||
| @@ -0,0 +1,77 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include <vector> | |||||
| #include <utility> | |||||
| #include "dataset/kernels/image/bounding_box_augment_op.h" | |||||
| #include "dataset/kernels/image/resize_op.h" | |||||
| #include "dataset/kernels/image/image_utils.h" | |||||
| #include "dataset/core/cv_tensor.h" | |||||
| namespace mindspore { | |||||
| namespace dataset { | |||||
| const float BoundingBoxAugOp::defRatio = 0.3; | |||||
| BoundingBoxAugOp::BoundingBoxAugOp(std::shared_ptr<TensorOp> transform, float ratio) | |||||
| : ratio_(ratio), transform_(std::move(transform)) {} | |||||
| Status BoundingBoxAugOp::Compute(const TensorRow &input, TensorRow *output) { | |||||
| IO_CHECK_VECTOR(input, output); | |||||
| BOUNDING_BOX_CHECK(input); // check if bounding boxes are valid | |||||
| uint32_t num_of_boxes = input[1]->shape()[0]; | |||||
| uint32_t num_to_aug = num_of_boxes * ratio_; // cast to int | |||||
| std::vector<uint32_t> boxes(num_of_boxes); | |||||
| std::vector<uint32_t> selected_boxes; | |||||
| for (uint32_t i = 0; i < num_of_boxes; i++) boxes[i] = i; | |||||
| // sample bboxes according to ratio picked by user | |||||
| std::random_device rd; | |||||
| std::sample(boxes.begin(), boxes.end(), std::back_inserter(selected_boxes), num_to_aug, std::mt19937(rd())); | |||||
| std::shared_ptr<Tensor> crop_out; | |||||
| std::shared_ptr<Tensor> res_out; | |||||
| std::shared_ptr<CVTensor> input_restore = CVTensor::AsCVTensor(input[0]); | |||||
| for (uint32_t i = 0; i < num_to_aug; i++) { | |||||
| uint32_t min_x = 0; | |||||
| uint32_t min_y = 0; | |||||
| uint32_t b_w = 0; | |||||
| uint32_t b_h = 0; | |||||
| // get the required items | |||||
| input[1]->GetItemAt<uint32_t>(&min_x, {selected_boxes[i], 0}); | |||||
| input[1]->GetItemAt<uint32_t>(&min_y, {selected_boxes[i], 1}); | |||||
| input[1]->GetItemAt<uint32_t>(&b_w, {selected_boxes[i], 2}); | |||||
| input[1]->GetItemAt<uint32_t>(&b_h, {selected_boxes[i], 3}); | |||||
| Crop(input_restore, &crop_out, min_x, min_y, b_w, b_h); | |||||
| // transform the cropped bbox region | |||||
| transform_->Compute(crop_out, &res_out); | |||||
| // place the transformed region back in the restored input | |||||
| std::shared_ptr<CVTensor> res_img = CVTensor::AsCVTensor(res_out); | |||||
| // check if transformed crop is out of bounds of the box | |||||
| if (res_img->mat().cols > b_w || res_img->mat().rows > b_h || res_img->mat().cols < b_w || | |||||
| res_img->mat().rows < b_h) { | |||||
| // if so, resize to fit in the box | |||||
| std::shared_ptr<TensorOp> resize_op = std::make_shared<ResizeOp>(b_h, b_w); | |||||
| resize_op->Compute(std::static_pointer_cast<Tensor>(res_img), &res_out); | |||||
| res_img = CVTensor::AsCVTensor(res_out); | |||||
| } | |||||
| res_img->mat().copyTo(input_restore->mat()(cv::Rect(min_x, min_y, res_img->mat().cols, res_img->mat().rows))); | |||||
| } | |||||
| (*output).push_back(std::move(std::static_pointer_cast<Tensor>(input_restore))); | |||||
| (*output).push_back(input[1]); | |||||
| return Status::OK(); | |||||
| } | |||||
| } // namespace dataset | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,59 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef DATASET_KERNELS_IMAGE_BOUNDING_BOX_AUGMENT_OP_H_ | |||||
| #define DATASET_KERNELS_IMAGE_BOUNDING_BOX_AUGMENT_OP_H_ | |||||
| #include <memory> | |||||
| #include <random> | |||||
| #include <cstdlib> | |||||
| #include <opencv2/imgproc/imgproc.hpp> | |||||
| #include "dataset/core/tensor.h" | |||||
| #include "dataset/kernels/tensor_op.h" | |||||
| #include "dataset/util/status.h" | |||||
| namespace mindspore { | |||||
| namespace dataset { | |||||
| class BoundingBoxAugOp : public TensorOp { | |||||
| public: | |||||
| // Default values, also used by python_bindings.cc | |||||
| static const float defRatio; | |||||
| // Constructor for BoundingBoxAugmentOp | |||||
| // @param std::shared_ptr<TensorOp> transform transform: C++ opration to apply on select bounding boxes | |||||
| // @param float ratio: ratio of bounding boxes to have the transform applied on | |||||
| BoundingBoxAugOp(std::shared_ptr<TensorOp> transform, float ratio); | |||||
| ~BoundingBoxAugOp() override = default; | |||||
| // Provide stream operator for displaying it | |||||
| friend std::ostream &operator<<(std::ostream &out, const BoundingBoxAugOp &so) { | |||||
| so.Print(out); | |||||
| return out; | |||||
| } | |||||
| void Print(std::ostream &out) const override { out << "BoundingBoxAugOp"; } | |||||
| Status Compute(const TensorRow &input, TensorRow *output) override; | |||||
| private: | |||||
| float ratio_; | |||||
| std::shared_ptr<TensorOp> transform_; | |||||
| }; | |||||
| } // namespace dataset | |||||
| } // namespace mindspore | |||||
| #endif // DATASET_KERNELS_IMAGE_BOUNDING_BOX_AUGMENT_OP_H_ | |||||
| @@ -0,0 +1,61 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include <utility> | |||||
| #include "dataset/kernels/image/random_horizontal_flip_bbox_op.h" | |||||
| #include "dataset/kernels/image/image_utils.h" | |||||
| #include "dataset/util/status.h" | |||||
| #include "dataset/core/cv_tensor.h" | |||||
| #include "dataset/core/pybind_support.h" | |||||
| namespace mindspore { | |||||
| namespace dataset { | |||||
| const float RandomHorizontalFlipWithBBoxOp::kDefProbability = 0.5; | |||||
| Status RandomHorizontalFlipWithBBoxOp::Compute(const TensorRow &input, TensorRow *output) { | |||||
| IO_CHECK_VECTOR(input, output); | |||||
| BOUNDING_BOX_CHECK(input); | |||||
| if (distribution_(rnd_)) { | |||||
| // To test bounding boxes algorithm, create random bboxes from image dims | |||||
| size_t numOfBBoxes = input[1]->shape()[0]; // set to give number of bboxes | |||||
| float imgCenter = (input[0]->shape()[1] / 2); // get the center of the image | |||||
| for (int i = 0; i < numOfBBoxes; i++) { | |||||
| uint32_t b_w = 0; // bounding box width | |||||
| uint32_t min_x = 0; | |||||
| // get the required items | |||||
| input[1]->GetItemAt<uint32_t>(&min_x, {i, 0}); | |||||
| input[1]->GetItemAt<uint32_t>(&b_w, {i, 2}); | |||||
| // do the flip | |||||
| float diff = imgCenter - min_x; // get distance from min_x to center | |||||
| uint32_t refl_min_x = diff + imgCenter; // get reflection of min_x | |||||
| uint32_t new_min_x = refl_min_x - b_w; // subtract from the reflected min_x to get the new one | |||||
| input[1]->SetItemAt<uint32_t>({i, 0}, new_min_x); | |||||
| } | |||||
| (*output).push_back(nullptr); | |||||
| (*output).push_back(nullptr); | |||||
| // move input to output pointer of bounding boxes | |||||
| (*output)[1] = std::move(input[1]); | |||||
| // perform HorizontalFlip on the image | |||||
| std::shared_ptr<CVTensor> input_cv = CVTensor::AsCVTensor(std::move(input[0])); | |||||
| return HorizontalFlip(std::static_pointer_cast<Tensor>(input_cv), &(*output)[0]); | |||||
| } | |||||
| *output = input; | |||||
| return Status::OK(); | |||||
| } | |||||
| } // namespace dataset | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,62 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef DATASET_KERNELS_IMAGE_RANDOM_HORIZONTAL_FLIP_BBOX_OP_H_ | |||||
| #define DATASET_KERNELS_IMAGE_RANDOM_HORIZONTAL_FLIP_BBOX_OP_H_ | |||||
| #include <pybind11/numpy.h> | |||||
| #include <pybind11/stl.h> | |||||
| #include <memory> | |||||
| #include <random> | |||||
| #include <cstdlib> | |||||
| #include <opencv2/imgproc/imgproc.hpp> | |||||
| #include "dataset/core/tensor.h" | |||||
| #include "dataset/kernels/tensor_op.h" | |||||
| #include "dataset/util/random.h" | |||||
| #include "dataset/util/status.h" | |||||
| #include "pybind11/pybind11.h" | |||||
| #include "pybind11/stl_bind.h" | |||||
| namespace mindspore { | |||||
| namespace dataset { | |||||
| class RandomHorizontalFlipWithBBoxOp : public TensorOp { | |||||
| public: | |||||
| // Default values, also used by python_bindings.cc | |||||
| static const float kDefProbability; | |||||
| explicit RandomHorizontalFlipWithBBoxOp(float probability = kDefProbability) : distribution_(probability) { | |||||
| rnd_.seed(GetSeed()); | |||||
| } | |||||
| ~RandomHorizontalFlipWithBBoxOp() override = default; | |||||
| // Provide stream operator for displaying it | |||||
| friend std::ostream &operator<<(std::ostream &out, const RandomHorizontalFlipWithBBoxOp &so) { | |||||
| so.Print(out); | |||||
| return out; | |||||
| } | |||||
| void Print(std::ostream &out) const override { out << "RandomHorizontalFlipWithBBoxOp"; } | |||||
| Status Compute(const TensorRow &input, TensorRow *output) override; | |||||
| private: | |||||
| std::mt19937 rnd_; | |||||
| std::bernoulli_distribution distribution_; | |||||
| }; | |||||
| } // namespace dataset | |||||
| } // namespace mindspore | |||||
| #endif // DATASET_KERNELS_IMAGE_RANDOM_HORIZONTAL_FLIP_BBOX_OP_H_ | |||||
| @@ -43,6 +43,36 @@ | |||||
| } \ | } \ | ||||
| } while (false) | } while (false) | ||||
| #define BOUNDING_BOX_CHECK(input) \ | |||||
| do { \ | |||||
| uint32_t num_of_features = input[1]->shape()[1]; \ | |||||
| if (num_of_features < 4) { \ | |||||
| return Status(StatusCode::kBoundingBoxInvalidShape, __LINE__, __FILE__, \ | |||||
| "Bounding boxes should be have at least 4 features"); \ | |||||
| } \ | |||||
| uint32_t num_of_boxes = input[1]->shape()[0]; \ | |||||
| uint32_t img_h = input[0]->shape()[0]; \ | |||||
| uint32_t img_w = input[0]->shape()[1]; \ | |||||
| for (uint32_t i = 0; i < num_of_boxes; i++) { \ | |||||
| uint32_t min_x = 0; \ | |||||
| uint32_t min_y = 0; \ | |||||
| uint32_t b_w = 0; \ | |||||
| uint32_t b_h = 0; \ | |||||
| input[1]->GetItemAt<uint32_t>(&min_x, {i, 0}); \ | |||||
| input[1]->GetItemAt<uint32_t>(&min_y, {i, 1}); \ | |||||
| input[1]->GetItemAt<uint32_t>(&b_w, {i, 2}); \ | |||||
| input[1]->GetItemAt<uint32_t>(&b_h, {i, 3}); \ | |||||
| if ((min_x + b_w > img_w) || (min_y + b_h > img_h)) { \ | |||||
| return Status(StatusCode::kBoundingBoxOutOfBounds, __LINE__, __FILE__, \ | |||||
| "At least one of the bounding boxes is out of bounds of the image."); \ | |||||
| } \ | |||||
| if (static_cast<int>(min_x) < 0 || static_cast<int>(min_y) < 0) { \ | |||||
| return Status(StatusCode::kBoundingBoxOutOfBounds, __LINE__, __FILE__, \ | |||||
| "At least one of the bounding boxes has negative min_x or min_y."); \ | |||||
| } \ | |||||
| } \ | |||||
| } while (false) | |||||
| namespace mindspore { | namespace mindspore { | ||||
| namespace dataset { | namespace dataset { | ||||
| // A class that does a computation on a Tensor | // A class that does a computation on a Tensor | ||||
| @@ -71,6 +71,8 @@ enum class StatusCode : char { | |||||
| kTDTPushFailure = 8, | kTDTPushFailure = 8, | ||||
| kFileNotExist = 9, | kFileNotExist = 9, | ||||
| kProfilingError = 10, | kProfilingError = 10, | ||||
| kBoundingBoxOutOfBounds = 11, | |||||
| kBoundingBoxInvalidShape = 12, | |||||
| // Make this error code the last one. Add new error code above it. | // Make this error code the last one. Add new error code above it. | ||||
| kUnexpectedError = 127 | kUnexpectedError = 127 | ||||
| }; | }; | ||||
| @@ -45,7 +45,7 @@ import mindspore._c_dataengine as cde | |||||
| from .utils import Inter, Border | from .utils import Inter, Border | ||||
| from .validators import check_prob, check_crop, check_resize_interpolation, check_random_resize_crop, \ | from .validators import check_prob, check_crop, check_resize_interpolation, check_random_resize_crop, \ | ||||
| check_normalize_c, check_random_crop, check_random_color_adjust, check_random_rotation, \ | check_normalize_c, check_random_crop, check_random_color_adjust, check_random_rotation, \ | ||||
| check_resize, check_rescale, check_pad, check_cutout, check_uniform_augment_cpp | |||||
| check_resize, check_rescale, check_pad, check_cutout, check_uniform_augment_cpp, check_bounding_box_augment_cpp | |||||
| DE_C_INTER_MODE = {Inter.NEAREST: cde.InterpolationMode.DE_INTER_NEAREST_NEIGHBOUR, | DE_C_INTER_MODE = {Inter.NEAREST: cde.InterpolationMode.DE_INTER_NEAREST_NEIGHBOUR, | ||||
| Inter.LINEAR: cde.InterpolationMode.DE_INTER_LINEAR, | Inter.LINEAR: cde.InterpolationMode.DE_INTER_LINEAR, | ||||
| @@ -163,6 +163,21 @@ class RandomHorizontalFlip(cde.RandomHorizontalFlipOp): | |||||
| super().__init__(prob) | super().__init__(prob) | ||||
| class RandomHorizontalFlipWithBBox(cde.RandomHorizontalFlipWithBBoxOp): | |||||
| """ | |||||
| Flip the input image horizontally, randomly with a given probability. | |||||
| Maintains data integrity by also flipping bounding boxes in an object detection pipeline. | |||||
| Args: | |||||
| prob (float): Probability of the image being flipped (default=0.5). | |||||
| """ | |||||
| @check_prob | |||||
| def __init__(self, prob=0.5): | |||||
| self.prob = prob | |||||
| super().__init__(prob) | |||||
| class RandomVerticalFlip(cde.RandomVerticalFlipOp): | class RandomVerticalFlip(cde.RandomVerticalFlipOp): | ||||
| """ | """ | ||||
| Flip the input image vertically, randomly with a given probability. | Flip the input image vertically, randomly with a given probability. | ||||
| @@ -177,6 +192,21 @@ class RandomVerticalFlip(cde.RandomVerticalFlipOp): | |||||
| super().__init__(prob) | super().__init__(prob) | ||||
| class BoundingBoxAug(cde.BoundingBoxAugOp): | |||||
| """ | |||||
| Flip the input image vertically, randomly with a given probability. | |||||
| Args: | |||||
| transform: C++ operation (python OPs are not accepted). | |||||
| ratio (float): Ratio of bounding boxes to apply augmentation on. Range: [0,1] (default=1). | |||||
| """ | |||||
| @check_bounding_box_augment_cpp | |||||
| def __init__(self, transform, ratio=0.3): | |||||
| self.ratio = ratio | |||||
| self.transform = transform | |||||
| super().__init__(transform, ratio) | |||||
| class Resize(cde.ResizeOp): | class Resize(cde.ResizeOp): | ||||
| """ | """ | ||||
| Resize the input image to the given size. | Resize the input image to the given size. | ||||
| @@ -852,6 +852,32 @@ def check_uniform_augment_cpp(method): | |||||
| return new_method | return new_method | ||||
| def check_bounding_box_augment_cpp(method): | |||||
| """Wrapper method to check the parameters of BoundingBoxAugment cpp op.""" | |||||
| @wraps(method) | |||||
| def new_method(self, *args, **kwargs): | |||||
| transform, ratio = (list(args) + 2 * [None])[:2] | |||||
| if "transform" in kwargs: | |||||
| transform = kwargs.get("transform") | |||||
| if "ratio" in kwargs: | |||||
| ratio = kwargs.get("ratio") | |||||
| if ratio is not None: | |||||
| check_value(ratio, [0., 1.]) | |||||
| kwargs["ratio"] = ratio | |||||
| else: | |||||
| ratio = 0.3 | |||||
| if not isinstance(ratio, float) and not isinstance(ratio, int): | |||||
| raise ValueError("Ratio should be an int or float.") | |||||
| if not isinstance(transform, TensorOp): | |||||
| raise ValueError("Transform can only be a C++ operation.") | |||||
| kwargs["transform"] = transform | |||||
| kwargs["ratio"] = ratio | |||||
| return method(self, **kwargs) | |||||
| return new_method | |||||
| def check_uniform_augment_py(method): | def check_uniform_augment_py(method): | ||||
| """Wrapper method to check the parameters of python UniformAugment op.""" | """Wrapper method to check the parameters of python UniformAugment op.""" | ||||
| @@ -0,0 +1,27 @@ | |||||
| <annotation> | |||||
| <folder>VOC2012</folder> | |||||
| <filename>121.jpg</filename> | |||||
| <source> | |||||
| <database>simulate VOC2007 Database</database> | |||||
| <annotation>simulate VOC2007</annotation> | |||||
| <image>flickr</image> | |||||
| </source> | |||||
| <size> | |||||
| <width>500</width> | |||||
| <height>375</height> | |||||
| <depth>3</depth> | |||||
| </size> | |||||
| <segmented>1</segmented> | |||||
| <object> | |||||
| <name>dog</name> | |||||
| <pose>Frontal</pose> | |||||
| <truncated>0</truncated> | |||||
| <difficult>0</difficult> | |||||
| <bndbox> | |||||
| <xmin>55</xmin> | |||||
| <ymin>34</ymin> | |||||
| <xmax>624</xmax> | |||||
| <ymax>555</ymax> | |||||
| </bndbox> | |||||
| </object> | |||||
| </annotation> | |||||
| @@ -0,0 +1,27 @@ | |||||
| <annotation> | |||||
| <folder>VOC2012</folder> | |||||
| <filename>123.jpg</filename> | |||||
| <source> | |||||
| <database>simulate VOC2007 Database</database> | |||||
| <annotation>simulate VOC2007</annotation> | |||||
| <image>flickr</image> | |||||
| </source> | |||||
| <size> | |||||
| <width>500</width> | |||||
| <height>375</height> | |||||
| <depth>3</depth> | |||||
| </size> | |||||
| <segmented>1</segmented> | |||||
| <object> | |||||
| <name>car</name> | |||||
| <pose>Unspecified</pose> | |||||
| <truncated>1</truncated> | |||||
| <difficult>0</difficult> | |||||
| <bndbox> | |||||
| <xmin>42</xmin> | |||||
| <ymin>6</ymin> | |||||
| <xmax>610</xmax> | |||||
| <ymax>600</ymax> | |||||
| </bndbox> | |||||
| </object> | |||||
| </annotation> | |||||
| @@ -0,0 +1,27 @@ | |||||
| <annotation> | |||||
| <folder>VOC2012</folder> | |||||
| <filename>129.jpg</filename> | |||||
| <source> | |||||
| <database>simulate VOC2007 Database</database> | |||||
| <annotation>simulate VOC2007</annotation> | |||||
| <image>flickr</image> | |||||
| </source> | |||||
| <size> | |||||
| <width>500</width> | |||||
| <height>375</height> | |||||
| <depth>3</depth> | |||||
| </size> | |||||
| <segmented>1</segmented> | |||||
| <object> | |||||
| <name>dog</name> | |||||
| <pose>Frontal</pose> | |||||
| <truncated>0</truncated> | |||||
| <difficult>0</difficult> | |||||
| <bndbox> | |||||
| <xmin>1328</xmin> | |||||
| <ymin>431</ymin> | |||||
| <xmax>2662</xmax> | |||||
| <ymax>1695</ymax> | |||||
| </bndbox> | |||||
| </object> | |||||
| </annotation> | |||||
| @@ -0,0 +1,27 @@ | |||||
| <annotation> | |||||
| <folder>VOC2012</folder> | |||||
| <filename>32.jpg</filename> | |||||
| <source> | |||||
| <database>simulate VOC2007 Database</database> | |||||
| <annotation>simulate VOC2007</annotation> | |||||
| <image>flickr</image> | |||||
| </source> | |||||
| <size> | |||||
| <width>500</width> | |||||
| <height>281</height> | |||||
| <depth>3</depth> | |||||
| </size> | |||||
| <segmented>1</segmented> | |||||
| <object> | |||||
| <name>train</name> | |||||
| <pose>Frontal</pose> | |||||
| <truncated>0</truncated> | |||||
| <difficult>0</difficult> | |||||
| <bndbox> | |||||
| <xmin>1168</xmin> | |||||
| <ymin>405</ymin> | |||||
| <xmax>3270</xmax> | |||||
| <ymax>2022</ymax> | |||||
| </bndbox> | |||||
| </object> | |||||
| </annotation> | |||||
| @@ -0,0 +1,27 @@ | |||||
| <annotation> | |||||
| <folder>VOC2012</folder> | |||||
| <filename>32.jpg</filename> | |||||
| <source> | |||||
| <database>simulate VOC2007 Database</database> | |||||
| <annotation>simulate VOC2007</annotation> | |||||
| <image>flickr</image> | |||||
| </source> | |||||
| <size> | |||||
| <width>500</width> | |||||
| <height>281</height> | |||||
| <depth>3</depth> | |||||
| </size> | |||||
| <segmented>1</segmented> | |||||
| <object> | |||||
| <name>train</name> | |||||
| <pose>Frontal</pose> | |||||
| <truncated>0</truncated> | |||||
| <difficult>0</difficult> | |||||
| <bndbox> | |||||
| <xmin>1168</xmin> | |||||
| <ymin>405</ymin> | |||||
| <xmax>3270</xmax> | |||||
| <ymax>2022</ymax> | |||||
| </bndbox> | |||||
| </object> | |||||
| </annotation> | |||||
| @@ -0,0 +1,27 @@ | |||||
| <annotation> | |||||
| <folder>VOC2012</folder> | |||||
| <filename>33.jpg</filename> | |||||
| <source> | |||||
| <database>simulate VOC2007 Database</database> | |||||
| <annotation>simulate VOC2007</annotation> | |||||
| <image>flickr</image> | |||||
| </source> | |||||
| <size> | |||||
| <width>500</width> | |||||
| <height>366</height> | |||||
| <depth>3</depth> | |||||
| </size> | |||||
| <segmented>1</segmented> | |||||
| <object> | |||||
| <name>person</name> | |||||
| <pose>Unspecified</pose> | |||||
| <truncated>0</truncated> | |||||
| <difficult>0</difficult> | |||||
| <bndbox> | |||||
| <xmin>1168</xmin> | |||||
| <ymin>395</ymin> | |||||
| <xmax>2859</xmax> | |||||
| <ymax>2084</ymax> | |||||
| </bndbox> | |||||
| </object> | |||||
| </annotation> | |||||
| @@ -0,0 +1,27 @@ | |||||
| <annotation> | |||||
| <folder>VOC2012</folder> | |||||
| <filename>39.jpg</filename> | |||||
| <source> | |||||
| <database>simulate VOC2007 Database</database> | |||||
| <annotation>simulate VOC2007</annotation> | |||||
| <image>flickr</image> | |||||
| </source> | |||||
| <size> | |||||
| <width>500</width> | |||||
| <height>375</height> | |||||
| <depth>3</depth> | |||||
| </size> | |||||
| <segmented>1</segmented> | |||||
| <object> | |||||
| <name>dog</name> | |||||
| <pose>Unspecified</pose> | |||||
| <truncated>0</truncated> | |||||
| <difficult>0</difficult> | |||||
| <bndbox> | |||||
| <xmin>684</xmin> | |||||
| <ymin>311</ymin> | |||||
| <xmax>3112</xmax> | |||||
| <ymax>1820</ymax> | |||||
| </bndbox> | |||||
| </object> | |||||
| </annotation> | |||||
| @@ -0,0 +1,27 @@ | |||||
| <annotation> | |||||
| <folder>VOC2012</folder> | |||||
| <filename>42.jpg</filename> | |||||
| <source> | |||||
| <database>simulate VOC2007 Database</database> | |||||
| <annotation>simulate VOC2007</annotation> | |||||
| <image>flickr</image> | |||||
| </source> | |||||
| <size> | |||||
| <width>500</width> | |||||
| <height>335</height> | |||||
| <depth>3</depth> | |||||
| </size> | |||||
| <segmented>1</segmented> | |||||
| <object> | |||||
| <name>person</name> | |||||
| <pose>Unspecified</pose> | |||||
| <truncated>1</truncated> | |||||
| <difficult>0</difficult> | |||||
| <bndbox> | |||||
| <xmin>874</xmin> | |||||
| <ymin>152</ymin> | |||||
| <xmax>2827</xmax> | |||||
| <ymax>2000</ymax> | |||||
| </bndbox> | |||||
| </object> | |||||
| </annotation> | |||||
| @@ -0,0 +1,39 @@ | |||||
| <annotation> | |||||
| <folder>VOC2012</folder> | |||||
| <filename>61.jpg</filename> | |||||
| <source> | |||||
| <database>simulate VOC2007 Database</database> | |||||
| <annotation>simulate VOC2007</annotation> | |||||
| <image>flickr</image> | |||||
| </source> | |||||
| <size> | |||||
| <width>500</width> | |||||
| <height>333</height> | |||||
| <depth>3</depth> | |||||
| </size> | |||||
| <segmented>1</segmented> | |||||
| <object> | |||||
| <name>train</name> | |||||
| <pose>Unspecified</pose> | |||||
| <truncated>0</truncated> | |||||
| <difficult>0</difficult> | |||||
| <bndbox> | |||||
| <xmin>25</xmin> | |||||
| <ymin>40</ymin> | |||||
| <xmax>641</xmax> | |||||
| <ymax>613</ymax> | |||||
| </bndbox> | |||||
| </object> | |||||
| <object> | |||||
| <name>person</name> | |||||
| <pose>Frontal</pose> | |||||
| <truncated>0</truncated> | |||||
| <difficult>0</difficult> | |||||
| <bndbox> | |||||
| <xmin>204</xmin> | |||||
| <ymin>198</ymin> | |||||
| <xmax>271</xmax> | |||||
| <ymax>293</ymax> | |||||
| </bndbox> | |||||
| </object> | |||||
| </annotation> | |||||
| @@ -0,0 +1,39 @@ | |||||
| <annotation> | |||||
| <folder>VOC2012</folder> | |||||
| <filename>63.jpg</filename> | |||||
| <source> | |||||
| <database>simulate VOC2007 Database</database> | |||||
| <annotation>simulate VOC2007</annotation> | |||||
| <image>flickr</image> | |||||
| </source> | |||||
| <size> | |||||
| <width>500</width> | |||||
| <height>375</height> | |||||
| <depth>3</depth> | |||||
| </size> | |||||
| <segmented>1</segmented> | |||||
| <object> | |||||
| <name>cat</name> | |||||
| <pose>Unspecified</pose> | |||||
| <truncated>0</truncated> | |||||
| <difficult>0</difficult> | |||||
| <bndbox> | |||||
| <xmin>23</xmin> | |||||
| <ymin>17</ymin> | |||||
| <xmax>565</xmax> | |||||
| <ymax>591</ymax> | |||||
| </bndbox> | |||||
| </object> | |||||
| <object> | |||||
| <name>chair</name> | |||||
| <pose>Frontal</pose> | |||||
| <truncated>1</truncated> | |||||
| <difficult>0</difficult> | |||||
| <bndbox> | |||||
| <xmin>36</xmin> | |||||
| <ymin>11</ymin> | |||||
| <xmax>439</xmax> | |||||
| <ymax>499</ymax> | |||||
| </bndbox> | |||||
| </object> | |||||
| </annotation> | |||||
| @@ -0,0 +1,27 @@ | |||||
| <annotation> | |||||
| <folder>VOC2012</folder> | |||||
| <filename>68.jpg</filename> | |||||
| <source> | |||||
| <database>simulate VOC2007 Database</database> | |||||
| <annotation>simulate VOC2007</annotation> | |||||
| <image>flickr</image> | |||||
| </source> | |||||
| <size> | |||||
| <width>500</width> | |||||
| <height>375</height> | |||||
| <depth>3</depth> | |||||
| </size> | |||||
| <segmented>1</segmented> | |||||
| <object> | |||||
| <name>cat</name> | |||||
| <pose>Unspecified</pose> | |||||
| <truncated>1</truncated> | |||||
| <difficult>0</difficult> | |||||
| <bndbox> | |||||
| <xmin>35</xmin> | |||||
| <ymin>11</ymin> | |||||
| <xmax>564</xmax> | |||||
| <ymax>545</ymax> | |||||
| </bndbox> | |||||
| </object> | |||||
| </annotation> | |||||
| @@ -0,0 +1 @@ | |||||
| invalidxml | |||||
| @@ -0,0 +1,15 @@ | |||||
| <annotation> | |||||
| <folder>VOC2012</folder> | |||||
| <filename>33.jpg</filename> | |||||
| <source> | |||||
| <database>simulate VOC2007 Database</database> | |||||
| <annotation>simulate VOC2007</annotation> | |||||
| <image>flickr</image> | |||||
| </source> | |||||
| <size> | |||||
| <width>500</width> | |||||
| <height>366</height> | |||||
| <depth>3</depth> | |||||
| </size> | |||||
| <segmented>1</segmented> | |||||
| </annotation> | |||||
| @@ -0,0 +1 @@ | |||||
| invalidxml | |||||
| @@ -0,0 +1,11 @@ | |||||
| 15 | |||||
| 32 | |||||
| 33 | |||||
| 39 | |||||
| 42 | |||||
| 61 | |||||
| 63 | |||||
| 68 | |||||
| 121 | |||||
| 123 | |||||
| 129 | |||||
| @@ -0,0 +1 @@ | |||||
| 15 | |||||
| @@ -0,0 +1 @@ | |||||
| 15 | |||||
| @@ -0,0 +1 @@ | |||||
| xmlnoobject | |||||
| @@ -0,0 +1 @@ | |||||
| 4176 | |||||
| @@ -0,0 +1,10 @@ | |||||
| 32 | |||||
| 33 | |||||
| 39 | |||||
| 42 | |||||
| 61 | |||||
| 63 | |||||
| 68 | |||||
| 121 | |||||
| 123 | |||||
| 129 | |||||
| @@ -0,0 +1 @@ | |||||
| 15 | |||||
| @@ -0,0 +1 @@ | |||||
| 15 | |||||
| @@ -0,0 +1,317 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================== | |||||
| """ | |||||
| Testing the bounding box augment op in DE | |||||
| """ | |||||
| from enum import Enum | |||||
| from mindspore import log as logger | |||||
| import mindspore.dataset as ds | |||||
| import mindspore.dataset.transforms.vision.c_transforms as c_vision | |||||
| import matplotlib.pyplot as plt | |||||
| import matplotlib.patches as patches | |||||
| import numpy as np | |||||
| GENERATE_GOLDEN = False | |||||
| DATA_DIR = "../data/dataset/testVOC2012_2" | |||||
| class BoxType(Enum): | |||||
| """ | |||||
| Defines box types for test cases | |||||
| """ | |||||
| WidthOverflow = 1 | |||||
| HeightOverflow = 2 | |||||
| NegativeXY = 3 | |||||
| OnEdge = 4 | |||||
| WrongShape = 5 | |||||
| class AddBadAnnotation: # pylint: disable=too-few-public-methods | |||||
| """ | |||||
| Used to add erroneous bounding boxes to object detection pipelines. | |||||
| Usage: | |||||
| >>> # Adds a box that covers the whole image. Good for testing edge cases | |||||
| >>> de = de.map(input_columns=["image", "annotation"], | |||||
| >>> output_columns=["image", "annotation"], | |||||
| >>> operations=AddBadAnnotation(BoxType.OnEdge)) | |||||
| """ | |||||
| def __init__(self, box_type): | |||||
| self.box_type = box_type | |||||
| def __call__(self, img, bboxes): | |||||
| """ | |||||
| Used to generate erroneous bounding box examples on given img. | |||||
| :param img: image where the bounding boxes are. | |||||
| :param bboxes: in [x_min, y_min, w, h, label, truncate, difficult] format | |||||
| :return: bboxes with bad examples added | |||||
| """ | |||||
| height = img.shape[0] | |||||
| width = img.shape[1] | |||||
| if self.box_type == BoxType.WidthOverflow: | |||||
| # use box that overflows on width | |||||
| return img, np.array([[0, 0, width + 1, height, 0, 0, 0]]).astype(np.uint32) | |||||
| if self.box_type == BoxType.HeightOverflow: | |||||
| # use box that overflows on height | |||||
| return img, np.array([[0, 0, width, height + 1, 0, 0, 0]]).astype(np.uint32) | |||||
| if self.box_type == BoxType.NegativeXY: | |||||
| # use box with negative xy | |||||
| return img, np.array([[-10, -10, width, height, 0, 0, 0]]).astype(np.uint32) | |||||
| if self.box_type == BoxType.OnEdge: | |||||
| # use box that covers the whole image | |||||
| return img, np.array([[0, 0, width, height, 0, 0, 0]]).astype(np.uint32) | |||||
| if self.box_type == BoxType.WrongShape: | |||||
| # use box that covers the whole image | |||||
| return img, np.array([[0, 0, width - 1]]).astype(np.uint32) | |||||
| return img, bboxes | |||||
| def h_flip(image): | |||||
| """ | |||||
| Apply the random_horizontal | |||||
| """ | |||||
| # with the seed provided in this test case, it will always flip. | |||||
| # that's why we flip here too | |||||
| image = image[:, ::-1, :] | |||||
| return image | |||||
| def check_bad_box(data, box_type, expected_error): | |||||
| """ | |||||
| :param data: de object detection pipeline | |||||
| :param box_type: type of bad box | |||||
| :param expected_error: error expected to get due to bad box | |||||
| :return: None | |||||
| """ | |||||
| try: | |||||
| test_op = c_vision.BoundingBoxAug(c_vision.RandomHorizontalFlip(1), | |||||
| 1) # DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM) | |||||
| data = data.map(input_columns=["annotation"], | |||||
| output_columns=["annotation"], | |||||
| operations=fix_annotate) | |||||
| # map to use width overflow | |||||
| data = data.map(input_columns=["image", "annotation"], | |||||
| output_columns=["image", "annotation"], | |||||
| columns_order=["image", "annotation"], | |||||
| operations=AddBadAnnotation(box_type)) # Add column for "annotation" | |||||
| # map to apply ops | |||||
| data = data.map(input_columns=["image", "annotation"], | |||||
| output_columns=["image", "annotation"], | |||||
| columns_order=["image", "annotation"], | |||||
| operations=[test_op]) # Add column for "annotation" | |||||
| for _, _ in enumerate(data.create_dict_iterator()): | |||||
| break | |||||
| except RuntimeError as error: | |||||
| logger.info("Got an exception in DE: {}".format(str(error))) | |||||
| assert expected_error in str(error) | |||||
| def fix_annotate(bboxes): | |||||
| """ | |||||
| Fix annotations to format followed by mindspore. | |||||
| :param bboxes: in [label, x_min, y_min, w, h, truncate, difficult] format | |||||
| :return: annotation in [x_min, y_min, w, h, label, truncate, difficult] format | |||||
| """ | |||||
| for bbox in bboxes: | |||||
| tmp = bbox[0] | |||||
| bbox[0] = bbox[1] | |||||
| bbox[1] = bbox[2] | |||||
| bbox[2] = bbox[3] | |||||
| bbox[3] = bbox[4] | |||||
| bbox[4] = tmp | |||||
| return bboxes | |||||
| def add_bounding_boxes(axis, bboxes): | |||||
| """ | |||||
| :param axis: axis to modify | |||||
| :param bboxes: bounding boxes to draw on the axis | |||||
| :return: None | |||||
| """ | |||||
| for bbox in bboxes: | |||||
| rect = patches.Rectangle((bbox[0], bbox[1]), | |||||
| bbox[2], bbox[3], | |||||
| linewidth=1, edgecolor='r', facecolor='none') | |||||
| # Add the patch to the Axes | |||||
| axis.add_patch(rect) | |||||
| def visualize(unaugmented_data, augment_data): | |||||
| """ | |||||
| :param unaugmented_data: original data | |||||
| :param augment_data: data after augmentations | |||||
| :return: None | |||||
| """ | |||||
| for idx, (un_aug_item, aug_item) in \ | |||||
| enumerate(zip(unaugmented_data.create_dict_iterator(), | |||||
| augment_data.create_dict_iterator())): | |||||
| axis = plt.subplot(141) | |||||
| plt.imshow(un_aug_item["image"]) | |||||
| add_bounding_boxes(axis, un_aug_item["annotation"]) # add Orig BBoxes | |||||
| plt.title("Original" + str(idx + 1)) | |||||
| logger.info("Original ", str(idx + 1), " :", un_aug_item["annotation"]) | |||||
| axis = plt.subplot(142) | |||||
| plt.imshow(aug_item["image"]) | |||||
| add_bounding_boxes(axis, aug_item["annotation"]) # add AugBBoxes | |||||
| plt.title("Augmented" + str(idx + 1)) | |||||
| logger.info("Augmented ", str(idx + 1), " ", aug_item["annotation"], "\n") | |||||
| plt.show() | |||||
| def test_bounding_box_augment_with_rotation_op(plot=False): | |||||
| """ | |||||
| Test BoundingBoxAugment op | |||||
| Prints images side by side with and without Aug applied + bboxes to compare and test | |||||
| """ | |||||
| logger.info("test_bounding_box_augment_with_rotation_op") | |||||
| data_voc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) | |||||
| data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) | |||||
| test_op = c_vision.BoundingBoxAug(c_vision.RandomRotation(90), 1) | |||||
| # DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM) | |||||
| # maps to fix annotations to minddata standard | |||||
| data_voc1 = data_voc1.map(input_columns=["annotation"], | |||||
| output_columns=["annotation"], | |||||
| operations=fix_annotate) | |||||
| data_voc2 = data_voc2.map(input_columns=["annotation"], | |||||
| output_columns=["annotation"], | |||||
| operations=fix_annotate) | |||||
| # map to apply ops | |||||
| data_voc2 = data_voc2.map(input_columns=["image", "annotation"], | |||||
| output_columns=["image", "annotation"], | |||||
| columns_order=["image", "annotation"], | |||||
| operations=[test_op]) # Add column for "annotation" | |||||
| if plot: | |||||
| visualize(data_voc1, data_voc2) | |||||
| def test_bounding_box_augment_with_crop_op(plot=False): | |||||
| """ | |||||
| Test BoundingBoxAugment op | |||||
| Prints images side by side with and without Aug applied + bboxes to compare and test | |||||
| """ | |||||
| logger.info("test_bounding_box_augment_with_crop_op") | |||||
| data_voc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) | |||||
| data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) | |||||
| test_op = c_vision.BoundingBoxAug(c_vision.RandomCrop(90), 1) | |||||
| # maps to fix annotations to minddata standard | |||||
| data_voc1 = data_voc1.map(input_columns=["annotation"], | |||||
| output_columns=["annotation"], | |||||
| operations=fix_annotate) | |||||
| data_voc2 = data_voc2.map(input_columns=["annotation"], | |||||
| output_columns=["annotation"], | |||||
| operations=fix_annotate) | |||||
| # map to apply ops | |||||
| data_voc2 = data_voc2.map(input_columns=["image", "annotation"], | |||||
| output_columns=["image", "annotation"], | |||||
| columns_order=["image", "annotation"], | |||||
| operations=[test_op]) # Add column for "annotation" | |||||
| if plot: | |||||
| visualize(data_voc1, data_voc2) | |||||
| def test_bounding_box_augment_valid_ratio_c(plot=False): | |||||
| """ | |||||
| Test RandomHorizontalFlipWithBBox op | |||||
| Prints images side by side with and without Aug applied + bboxes to compare and test | |||||
| """ | |||||
| logger.info("test_bounding_box_augment_valid_ratio_c") | |||||
| data_voc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) | |||||
| data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) | |||||
| test_op = c_vision.BoundingBoxAug(c_vision.RandomHorizontalFlip(1), 0.9) | |||||
| # DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM) | |||||
| # maps to fix annotations to minddata standard | |||||
| data_voc1 = data_voc1.map(input_columns=["annotation"], | |||||
| output_columns=["annotation"], | |||||
| operations=fix_annotate) | |||||
| data_voc2 = data_voc2.map(input_columns=["annotation"], | |||||
| output_columns=["annotation"], | |||||
| operations=fix_annotate) | |||||
| # map to apply ops | |||||
| data_voc2 = data_voc2.map(input_columns=["image", "annotation"], | |||||
| output_columns=["image", "annotation"], | |||||
| columns_order=["image", "annotation"], | |||||
| operations=[test_op]) # Add column for "annotation" | |||||
| if plot: | |||||
| visualize(data_voc1, data_voc2) | |||||
| def test_bounding_box_augment_invalid_ratio_c(): | |||||
| """ | |||||
| Test RandomHorizontalFlipWithBBox op with invalid input probability | |||||
| """ | |||||
| logger.info("test_bounding_box_augment_invalid_ratio_c") | |||||
| data_voc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) | |||||
| data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) | |||||
| try: | |||||
| # ratio range is from 0 - 1 | |||||
| test_op = c_vision.BoundingBoxAug(c_vision.RandomHorizontalFlip(1), 1.5) | |||||
| # maps to fix annotations to minddata standard | |||||
| data_voc1 = data_voc1.map(input_columns=["annotation"], | |||||
| output_columns=["annotation"], | |||||
| operations=fix_annotate) | |||||
| data_voc2 = data_voc2.map(input_columns=["annotation"], | |||||
| output_columns=["annotation"], | |||||
| operations=fix_annotate) | |||||
| # map to apply ops | |||||
| data_voc2 = data_voc2.map(input_columns=["image", "annotation"], | |||||
| output_columns=["image", "annotation"], | |||||
| columns_order=["image", "annotation"], | |||||
| operations=[test_op]) # Add column for "annotation" | |||||
| except ValueError as error: | |||||
| logger.info("Got an exception in DE: {}".format(str(error))) | |||||
| assert "Input is not" in str(error) | |||||
| def test_bounding_box_augment_invalid_bounds_c(): | |||||
| """ | |||||
| Test BoundingBoxAugment op with invalid bboxes. | |||||
| """ | |||||
| logger.info("test_bounding_box_augment_invalid_bounds_c") | |||||
| data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) | |||||
| check_bad_box(data_voc2, BoxType.WidthOverflow, "bounding boxes is out of bounds of the image") | |||||
| data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) | |||||
| check_bad_box(data_voc2, BoxType.HeightOverflow, "bounding boxes is out of bounds of the image") | |||||
| data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) | |||||
| check_bad_box(data_voc2, BoxType.NegativeXY, "min_x") | |||||
| data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) | |||||
| check_bad_box(data_voc2, BoxType.WrongShape, "4 features") | |||||
| if __name__ == "__main__": | |||||
| # set to false to not show plots | |||||
| test_bounding_box_augment_with_rotation_op(False) | |||||
| test_bounding_box_augment_with_crop_op(False) | |||||
| test_bounding_box_augment_valid_ratio_c(False) | |||||
| test_bounding_box_augment_invalid_ratio_c() | |||||
| test_bounding_box_augment_invalid_bounds_c() | |||||
| @@ -0,0 +1,281 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================== | |||||
| """ | |||||
| Testing the random horizontal flip with bounding boxes op in DE | |||||
| """ | |||||
| from enum import Enum | |||||
| from mindspore import log as logger | |||||
| import mindspore.dataset as ds | |||||
| import mindspore.dataset.transforms.vision.c_transforms as c_vision | |||||
| import matplotlib.pyplot as plt | |||||
| import matplotlib.patches as patches | |||||
| import numpy as np | |||||
| GENERATE_GOLDEN = False | |||||
| DATA_DIR = "../data/dataset/testVOC2012_2" | |||||
| class BoxType(Enum): | |||||
| """ | |||||
| Defines box types for test cases | |||||
| """ | |||||
| WidthOverflow = 1 | |||||
| HeightOverflow = 2 | |||||
| NegativeXY = 3 | |||||
| OnEdge = 4 | |||||
| WrongShape = 5 | |||||
| class AddBadAnnotation: # pylint: disable=too-few-public-methods | |||||
| """ | |||||
| Used to add erroneous bounding boxes to object detection pipelines. | |||||
| Usage: | |||||
| >>> # Adds a box that covers the whole image. Good for testing edge cases | |||||
| >>> de = de.map(input_columns=["image", "annotation"], | |||||
| >>> output_columns=["image", "annotation"], | |||||
| >>> operations=AddBadAnnotation(BoxType.OnEdge)) | |||||
| """ | |||||
| def __init__(self, box_type): | |||||
| self.box_type = box_type | |||||
| def __call__(self, img, bboxes): | |||||
| """ | |||||
| Used to generate erroneous bounding box examples on given img. | |||||
| :param img: image where the bounding boxes are. | |||||
| :param bboxes: in [x_min, y_min, w, h, label, truncate, difficult] format | |||||
| :return: bboxes with bad examples added | |||||
| """ | |||||
| height = img.shape[0] | |||||
| width = img.shape[1] | |||||
| if self.box_type == BoxType.WidthOverflow: | |||||
| # use box that overflows on width | |||||
| return img, np.array([[0, 0, width + 1, height, 0, 0, 0]]).astype(np.uint32) | |||||
| if self.box_type == BoxType.HeightOverflow: | |||||
| # use box that overflows on height | |||||
| return img, np.array([[0, 0, width, height + 1, 0, 0, 0]]).astype(np.uint32) | |||||
| if self.box_type == BoxType.NegativeXY: | |||||
| # use box with negative xy | |||||
| return img, np.array([[-10, -10, width, height, 0, 0, 0]]).astype(np.uint32) | |||||
| if self.box_type == BoxType.OnEdge: | |||||
| # use box that covers the whole image | |||||
| return img, np.array([[0, 0, width, height, 0, 0, 0]]).astype(np.uint32) | |||||
| if self.box_type == BoxType.WrongShape: | |||||
| # use box that covers the whole image | |||||
| return img, np.array([[0, 0, width - 1]]).astype(np.uint32) | |||||
| return img, bboxes | |||||
| def h_flip(image): | |||||
| """ | |||||
| Apply the random_horizontal | |||||
| """ | |||||
| # with the seed provided in this test case, it will always flip. | |||||
| # that's why we flip here too | |||||
| image = image[:, ::-1, :] | |||||
| return image | |||||
| def check_bad_box(data, box_type, expected_error): | |||||
| """ | |||||
| :param data: de object detection pipeline | |||||
| :param box_type: type of bad box | |||||
| :param expected_error: error expected to get due to bad box | |||||
| :return: None | |||||
| """ | |||||
| # DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM) | |||||
| try: | |||||
| test_op = c_vision.RandomHorizontalFlipWithBBox(1) | |||||
| data = data.map(input_columns=["annotation"], | |||||
| output_columns=["annotation"], | |||||
| operations=fix_annotate) | |||||
| # map to use width overflow | |||||
| data = data.map(input_columns=["image", "annotation"], | |||||
| output_columns=["image", "annotation"], | |||||
| columns_order=["image", "annotation"], | |||||
| operations=AddBadAnnotation(box_type)) # Add column for "annotation" | |||||
| # map to apply ops | |||||
| data = data.map(input_columns=["image", "annotation"], | |||||
| output_columns=["image", "annotation"], | |||||
| columns_order=["image", "annotation"], | |||||
| operations=[test_op]) # Add column for "annotation" | |||||
| for _, _ in enumerate(data.create_dict_iterator()): | |||||
| break | |||||
| except RuntimeError as error: | |||||
| logger.info("Got an exception in DE: {}".format(str(error))) | |||||
| assert expected_error in str(error) | |||||
| def fix_annotate(bboxes): | |||||
| """ | |||||
| Fix annotations to format followed by mindspore. | |||||
| :param bboxes: in [label, x_min, y_min, w, h, truncate, difficult] format | |||||
| :return: annotation in [x_min, y_min, w, h, label, truncate, difficult] format | |||||
| """ | |||||
| for bbox in bboxes: | |||||
| tmp = bbox[0] | |||||
| bbox[0] = bbox[1] | |||||
| bbox[1] = bbox[2] | |||||
| bbox[2] = bbox[3] | |||||
| bbox[3] = bbox[4] | |||||
| bbox[4] = tmp | |||||
| return bboxes | |||||
| def add_bounding_boxes(axis, bboxes): | |||||
| """ | |||||
| :param axis: axis to modify | |||||
| :param bboxes: bounding boxes to draw on the axis | |||||
| :return: None | |||||
| """ | |||||
| for bbox in bboxes: | |||||
| rect = patches.Rectangle((bbox[0], bbox[1]), | |||||
| bbox[2], bbox[3], | |||||
| linewidth=1, edgecolor='r', facecolor='none') | |||||
| # Add the patch to the Axes | |||||
| axis.add_patch(rect) | |||||
| def visualize(unaugmented_data, augment_data): | |||||
| """ | |||||
| :param unaugmented_data: original data | |||||
| :param augment_data: data after augmentations | |||||
| :return: None | |||||
| """ | |||||
| for idx, (un_aug_item, aug_item) in \ | |||||
| enumerate(zip(unaugmented_data.create_dict_iterator(), | |||||
| augment_data.create_dict_iterator())): | |||||
| axis = plt.subplot(141) | |||||
| plt.imshow(un_aug_item["image"]) | |||||
| add_bounding_boxes(axis, un_aug_item["annotation"]) # add Orig BBoxes | |||||
| plt.title("Original" + str(idx + 1)) | |||||
| logger.info("Original ", str(idx + 1), " :", un_aug_item["annotation"]) | |||||
| axis = plt.subplot(142) | |||||
| plt.imshow(aug_item["image"]) | |||||
| add_bounding_boxes(axis, aug_item["annotation"]) # add AugBBoxes | |||||
| plt.title("Augmented" + str(idx + 1)) | |||||
| logger.info("Augmented ", str(idx + 1), " ", aug_item["annotation"], "\n") | |||||
| plt.show() | |||||
| def test_random_horizontal_bbox_op(plot=False): | |||||
| """ | |||||
| Test RandomHorizontalFlipWithBBox op | |||||
| Prints images side by side with and without Aug applied + bboxes to compare and test | |||||
| """ | |||||
| logger.info("test_random_horizontal_bbox_c") | |||||
| data_voc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) | |||||
| data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) | |||||
| # DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM) | |||||
| test_op = c_vision.RandomHorizontalFlipWithBBox(1) | |||||
| # maps to fix annotations to minddata standard | |||||
| data_voc1 = data_voc1.map(input_columns=["annotation"], | |||||
| output_columns=["annotation"], | |||||
| operations=fix_annotate) | |||||
| data_voc2 = data_voc2.map(input_columns=["annotation"], | |||||
| output_columns=["annotation"], | |||||
| operations=fix_annotate) | |||||
| # map to apply ops | |||||
| data_voc2 = data_voc2.map(input_columns=["image", "annotation"], | |||||
| output_columns=["image", "annotation"], | |||||
| columns_order=["image", "annotation"], | |||||
| operations=[test_op]) # Add column for "annotation" | |||||
| if plot: | |||||
| visualize(data_voc1, data_voc2) | |||||
| def test_random_horizontal_bbox_valid_prob_c(plot=False): | |||||
| """ | |||||
| Test RandomHorizontalFlipWithBBox op | |||||
| Prints images side by side with and without Aug applied + bboxes to compare and test | |||||
| """ | |||||
| logger.info("test_random_horizontal_bbox_valid_prob_c") | |||||
| data_voc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) | |||||
| data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) | |||||
| # DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM) | |||||
| test_op = c_vision.RandomHorizontalFlipWithBBox(0.3) | |||||
| # maps to fix annotations to minddata standard | |||||
| data_voc1 = data_voc1.map(input_columns=["annotation"], | |||||
| output_columns=["annotation"], | |||||
| operations=fix_annotate) | |||||
| data_voc2 = data_voc2.map(input_columns=["annotation"], | |||||
| output_columns=["annotation"], | |||||
| operations=fix_annotate) | |||||
| # map to apply ops | |||||
| data_voc2 = data_voc2.map(input_columns=["image", "annotation"], | |||||
| output_columns=["image", "annotation"], | |||||
| columns_order=["image", "annotation"], | |||||
| operations=[test_op]) # Add column for "annotation" | |||||
| if plot: | |||||
| visualize(data_voc1, data_voc2) | |||||
| def test_random_horizontal_bbox_invalid_prob_c(): | |||||
| """ | |||||
| Test RandomHorizontalFlipWithBBox op with invalid input probability | |||||
| """ | |||||
| logger.info("test_random_horizontal_bbox_invalid_prob_c") | |||||
| data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) | |||||
| try: | |||||
| # Note: Valid range of prob should be [0.0, 1.0] | |||||
| test_op = c_vision.RandomHorizontalFlipWithBBox(1.5) | |||||
| data_voc2 = data_voc2.map(input_columns=["annotation"], | |||||
| output_columns=["annotation"], | |||||
| operations=fix_annotate) | |||||
| # map to apply ops | |||||
| data_voc2 = data_voc2.map(input_columns=["image", "annotation"], | |||||
| output_columns=["image", "annotation"], | |||||
| columns_order=["image", "annotation"], | |||||
| operations=[test_op]) # Add column for "annotation" | |||||
| except ValueError as error: | |||||
| logger.info("Got an exception in DE: {}".format(str(error))) | |||||
| assert "Input is not" in str(error) | |||||
| def test_random_horizontal_bbox_invalid_bounds_c(): | |||||
| """ | |||||
| Test RandomHorizontalFlipWithBBox op with invalid bounding boxes | |||||
| """ | |||||
| logger.info("test_random_horizontal_bbox_invalid_bounds_c") | |||||
| data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) | |||||
| check_bad_box(data_voc2, BoxType.WidthOverflow, "bounding boxes is out of bounds of the image") | |||||
| data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) | |||||
| check_bad_box(data_voc2, BoxType.HeightOverflow, "bounding boxes is out of bounds of the image") | |||||
| data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) | |||||
| check_bad_box(data_voc2, BoxType.NegativeXY, "min_x") | |||||
| data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) | |||||
| check_bad_box(data_voc2, BoxType.WrongShape, "4 features") | |||||
| if __name__ == "__main__": | |||||
| # set to false to not show plots | |||||
| test_random_horizontal_bbox_op(False) | |||||
| test_random_horizontal_bbox_valid_prob_c(False) | |||||
| test_random_horizontal_bbox_invalid_prob_c() | |||||
| test_random_horizontal_bbox_invalid_bounds_c() | |||||