| @@ -0,0 +1,77 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| ''' | |||
| Bert hub interface for bert base and bert nezha | |||
| ''' | |||
| from src.bert_model import BertModel | |||
| from src.bert_model import BertConfig | |||
| import mindspore.common.dtype as mstype | |||
| bert_net_cfg_base = BertConfig( | |||
| batch_size=32, | |||
| seq_length=128, | |||
| vocab_size=21128, | |||
| hidden_size=768, | |||
| num_hidden_layers=12, | |||
| num_attention_heads=12, | |||
| intermediate_size=3072, | |||
| hidden_act="gelu", | |||
| hidden_dropout_prob=0.1, | |||
| attention_probs_dropout_prob=0.1, | |||
| max_position_embeddings=512, | |||
| type_vocab_size=2, | |||
| initializer_range=0.02, | |||
| use_relative_positions=False, | |||
| input_mask_from_dataset=True, | |||
| token_type_ids_from_dataset=True, | |||
| dtype=mstype.float32, | |||
| compute_type=mstype.float16 | |||
| ) | |||
| bert_net_cfg_nezha = BertConfig( | |||
| batch_size=32, | |||
| seq_length=128, | |||
| vocab_size=21128, | |||
| hidden_size=1024, | |||
| num_hidden_layers=24, | |||
| num_attention_heads=16, | |||
| intermediate_size=4096, | |||
| hidden_act="gelu", | |||
| hidden_dropout_prob=0.1, | |||
| attention_probs_dropout_prob=0.1, | |||
| max_position_embeddings=512, | |||
| type_vocab_size=2, | |||
| initializer_range=0.02, | |||
| use_relative_positions=True, | |||
| input_mask_from_dataset=True, | |||
| token_type_ids_from_dataset=True, | |||
| dtype=mstype.float32, | |||
| compute_type=mstype.float16 | |||
| ) | |||
| def create_network(name, *args, **kwargs): | |||
| ''' | |||
| Create bert network for base and nezha. | |||
| ''' | |||
| if name == 'bert_base': | |||
| if "batch_size" in kwargs: | |||
| bert_net_cfg_base.batch_size = kwargs["batch_size"] | |||
| if "seq_length" in kwargs: | |||
| bert_net_cfg_base.seq_length = kwargs["seq_length"] | |||
| return BertModel(bert_net_cfg_base, *args) | |||
| if name == 'bert_nezha': | |||
| if "batch_size" in kwargs: | |||
| bert_net_cfg_nezha.batch_size = kwargs["batch_size"] | |||
| if "seq_length" in kwargs: | |||
| bert_net_cfg_nezha.seq_length = kwargs["seq_length"] | |||
| return BertModel(bert_net_cfg_nezha, *args) | |||
| raise NotImplementedError(f"{name} is not implemented in the repo") | |||