From: @huangbingjian Reviewed-by: @ginfung,@zh_qh Signed-off-by: @zh_qhpull/15532/MERGE
| @@ -20,41 +20,69 @@ from mindspore.common import dtype as mstype | |||
| grad_all = C.GradOperation(get_all=True) | |||
| context.set_context(device_target="Ascend") | |||
| def test_single_if(): | |||
| class SingleIfNet(nn.Cell): | |||
| def construct(self, x, y): | |||
| x += 1 | |||
| if x < y: | |||
| y += x | |||
| else: | |||
| y -= x | |||
| y += 5 | |||
| return y | |||
| class GradNet(nn.Cell): | |||
| def __init__(self, net): | |||
| super(GradNet, self).__init__() | |||
| self.net = net | |||
| def construct(self, *inputs): | |||
| return grad_all(self.net)(*inputs) | |||
| x = Tensor(2, mstype.int32) | |||
| y = Tensor(5, mstype.int32) | |||
| class SingleIfNet(nn.Cell): | |||
| def construct(self, x, y): | |||
| x += 1 | |||
| if x < y: | |||
| y += x | |||
| else: | |||
| y -= x | |||
| y += 5 | |||
| return y | |||
| class SingleIfNet1(nn.Cell): | |||
| def construct(self, x, y): | |||
| x += 1 | |||
| out = self.func(x, y) | |||
| out *= 2 | |||
| return out | |||
| def func(self, x, y): | |||
| if x < y: | |||
| y += x | |||
| else: | |||
| y -= x | |||
| y += 5 | |||
| return y | |||
| class GradNet(nn.Cell): | |||
| def __init__(self, net): | |||
| super(GradNet, self).__init__() | |||
| self.net = net | |||
| def construct(self, *inputs): | |||
| return grad_all(self.net)(*inputs) | |||
| def control_flow_single_if(input_net, x, y): | |||
| # graph mode | |||
| context.set_context(mode=context.GRAPH_MODE) | |||
| if_net = SingleIfNet() | |||
| net = GradNet(if_net) | |||
| graph_forward_res = if_net(x, y) | |||
| graph_backward_res = net(x, y) | |||
| net = input_net() | |||
| grad_net = GradNet(net) | |||
| graph_forward_res = net(x, y) | |||
| graph_backward_res = grad_net(x, y) | |||
| # pynative mode | |||
| context.set_context(mode=context.PYNATIVE_MODE) | |||
| if_net = SingleIfNet() | |||
| net = GradNet(if_net) | |||
| pynative_forward_res = if_net(x, y) | |||
| pynative_backward_res = net(x, y) | |||
| net = input_net() | |||
| grad_net = GradNet(net) | |||
| pynative_forward_res = net(x, y) | |||
| pynative_backward_res = grad_net(x, y) | |||
| assert graph_forward_res == pynative_forward_res | |||
| assert graph_backward_res == pynative_backward_res | |||
| def test_single_if(): | |||
| x = Tensor(2, mstype.int32) | |||
| y = Tensor(5, mstype.int32) | |||
| control_flow_single_if(SingleIfNet, x, y) | |||
| def test_single_if_01(): | |||
| x = Tensor(2, mstype.int32) | |||
| y = Tensor(5, mstype.int32) | |||
| control_flow_single_if(SingleIfNet1, x, y) | |||
| @@ -21,44 +21,138 @@ from mindspore.common.parameter import Parameter | |||
| grad_all = C.GradOperation(get_all=True) | |||
| context.set_context(device_target="Ascend") | |||
| def test_if_in_if(): | |||
| class IfInIfNet(nn.Cell): | |||
| def __init__(self): | |||
| super().__init__() | |||
| self.param_a = Parameter(Tensor(5, mstype.int32), name='a') | |||
| self.param_b = Parameter(Tensor(4, mstype.int32), name='b') | |||
| def construct(self, x): | |||
| if self.param_a > self.param_b: | |||
| x += 10 | |||
| if x > self.param_a: | |||
| self.param_b += 1 | |||
| x += self.param_a | |||
| return x | |||
| class GradNet(nn.Cell): | |||
| def __init__(self, net): | |||
| super(GradNet, self).__init__() | |||
| self.net = net | |||
| def construct(self, *inputs): | |||
| return grad_all(self.net)(*inputs) | |||
| x = Tensor(2, mstype.int32) | |||
| class IfInIfNet(nn.Cell): | |||
| def __init__(self): | |||
| super().__init__() | |||
| self.param_a = Parameter(Tensor(5, mstype.int32), name='a') | |||
| self.param_b = Parameter(Tensor(4, mstype.int32), name='b') | |||
| def construct(self, x): | |||
| if self.param_a > self.param_b: | |||
| x += 10 | |||
| if x > self.param_a: | |||
| self.param_b += 1 | |||
| x += self.param_a | |||
| return x | |||
| class IfInIfNet1(nn.Cell): | |||
| def __init__(self): | |||
| super().__init__() | |||
| self.param_a = Parameter(Tensor(5, mstype.int32), name='a') | |||
| self.param_b = Parameter(Tensor(4, mstype.int32), name='b') | |||
| def construct(self, x): | |||
| if self.param_a > self.param_b: | |||
| out = self.func(x) | |||
| else: | |||
| out = self.func(self.param_a) | |||
| out += self.param_b | |||
| return out | |||
| def func(self, x): | |||
| x += 10 | |||
| if x > self.param_a: | |||
| self.param_b += 1 | |||
| x += self.param_a | |||
| return x | |||
| class IfInIfNet2(nn.Cell): | |||
| def __init__(self): | |||
| super().__init__() | |||
| self.param_a = Parameter(Tensor(5, mstype.int32), name='a') | |||
| self.param_b = Parameter(Tensor(4, mstype.int32), name='b') | |||
| def construct(self, x): | |||
| if self.check(self.param_a, self.param_b): | |||
| out = self.func(x) | |||
| else: | |||
| out = x | |||
| out += self.param_b | |||
| return out | |||
| def func(self, x): | |||
| x += 10 | |||
| if x > self.param_a: | |||
| self.param_b += 1 | |||
| x += self.param_a | |||
| return x | |||
| def check(self, x, y): | |||
| if x < y: | |||
| self.param_b += 1 | |||
| return True | |||
| self.param_b -= 1 | |||
| return False | |||
| class IfInIfNet3(nn.Cell): | |||
| def __init__(self): | |||
| super().__init__() | |||
| self.param_a = Parameter(Tensor(5, mstype.int32), name='a') | |||
| self.param_b = Parameter(Tensor(4, mstype.int32), name='b') | |||
| def construct(self, x): | |||
| if self.func(x) > self.param_a: | |||
| out = x | |||
| else: | |||
| out = self.param_a | |||
| out += self.param_b | |||
| return out | |||
| def func(self, x): | |||
| x += 10 | |||
| if x > self.param_a: | |||
| self.param_b += 1 | |||
| x += self.param_a | |||
| return x | |||
| class GradNet(nn.Cell): | |||
| def __init__(self, net): | |||
| super(GradNet, self).__init__() | |||
| self.net = net | |||
| def construct(self, *inputs): | |||
| return grad_all(self.net)(*inputs) | |||
| def control_flow_if_in_if(input_net, x): | |||
| # graph mode | |||
| context.set_context(mode=context.GRAPH_MODE) | |||
| if_in_if_net = IfInIfNet() | |||
| net = GradNet(if_in_if_net) | |||
| graph_forward_res = if_in_if_net(x) | |||
| graph_backward_res = net(x) | |||
| net = input_net() | |||
| grad_net = GradNet(net) | |||
| graph_forward_res = net(x) | |||
| graph_backward_res = grad_net(x) | |||
| # pynative mode | |||
| context.set_context(mode=context.PYNATIVE_MODE) | |||
| if_in_if_net = IfInIfNet() | |||
| net = GradNet(if_in_if_net) | |||
| pynative_forward_res = if_in_if_net(x) | |||
| pynative_backward_res = net(x) | |||
| net = input_net() | |||
| grad_net = GradNet(net) | |||
| pynative_forward_res = net(x) | |||
| pynative_backward_res = grad_net(x) | |||
| assert graph_forward_res == pynative_forward_res | |||
| assert graph_backward_res == pynative_backward_res | |||
| def test_if_in_if(): | |||
| x = Tensor(2, mstype.int32) | |||
| control_flow_if_in_if(IfInIfNet, x) | |||
| def test_if_in_if_01(): | |||
| x = Tensor(2, mstype.int32) | |||
| control_flow_if_in_if(IfInIfNet1, x) | |||
| def test_if_in_if_02(): | |||
| x = Tensor(2, mstype.int32) | |||
| control_flow_if_in_if(IfInIfNet2, x) | |||
| def test_if_in_if_03(): | |||
| x = Tensor(2, mstype.int32) | |||
| control_flow_if_in_if(IfInIfNet3, x) | |||
| @@ -21,45 +21,100 @@ from mindspore.common.parameter import Parameter | |||
| grad_all = C.GradOperation(get_all=True) | |||
| context.set_context(device_target="Ascend") | |||
| def test_if_after_if(): | |||
| class IfAfterIfNet(nn.Cell): | |||
| def __init__(self): | |||
| super().__init__() | |||
| self.param_a = Parameter(Tensor(5, mstype.int32), name='a') | |||
| self.param_b = Parameter(Tensor(4, mstype.int32), name='b') | |||
| def construct(self, x): | |||
| out = x + self.param_b | |||
| if self.param_a > self.param_b: | |||
| x += 5 | |||
| self.param_b += 4 | |||
| if x < self.param_b: | |||
| out += self.param_b | |||
| return out | |||
| class GradNet(nn.Cell): | |||
| def __init__(self, net): | |||
| super(GradNet, self).__init__() | |||
| self.net = net | |||
| def construct(self, *inputs): | |||
| return grad_all(self.net)(*inputs) | |||
| x = Tensor(2, mstype.int32) | |||
| class IfAfterIfNet(nn.Cell): | |||
| def __init__(self): | |||
| super().__init__() | |||
| self.param_a = Parameter(Tensor(5, mstype.int32), name='a') | |||
| self.param_b = Parameter(Tensor(4, mstype.int32), name='b') | |||
| def construct(self, x, y): | |||
| out = y | |||
| if self.param_a > self.param_b: | |||
| x += 5 | |||
| self.param_b += 4 | |||
| if x < self.param_b: | |||
| out += self.param_b | |||
| return out | |||
| class IfAfterIfNet1(nn.Cell): | |||
| def __init__(self): | |||
| super().__init__() | |||
| self.param_a = Parameter(Tensor(5, mstype.int32), name='a') | |||
| self.param_b = Parameter(Tensor(4, mstype.int32), name='b') | |||
| def construct(self, x, y): | |||
| out = y | |||
| x = self.func(x) | |||
| if x < self.param_b: | |||
| out += self.param_b | |||
| return out | |||
| def func(self, x): | |||
| if self.param_a > self.param_b: | |||
| x += 5 | |||
| self.param_b += 4 | |||
| return x | |||
| class IfAfterIfNet2(nn.Cell): | |||
| def construct(self, x, y): | |||
| x += 1 | |||
| out = self.func(x, y) | |||
| if out > 10: | |||
| out += 5 | |||
| return out | |||
| def func(self, x, y): | |||
| if x < y: | |||
| y += x | |||
| else: | |||
| y -= x | |||
| return y | |||
| class GradNet(nn.Cell): | |||
| def __init__(self, net): | |||
| super(GradNet, self).__init__() | |||
| self.net = net | |||
| def construct(self, *inputs): | |||
| return grad_all(self.net)(*inputs) | |||
| def control_flow_if_after_if(input_net, x, y): | |||
| # graph mode | |||
| context.set_context(mode=context.GRAPH_MODE) | |||
| if_after_if_net = IfAfterIfNet() | |||
| net = GradNet(if_after_if_net) | |||
| graph_forward_res = if_after_if_net(x) | |||
| graph_backward_res = net(x) | |||
| net = input_net() | |||
| grad_net = GradNet(net) | |||
| graph_forward_res = net(x, y) | |||
| graph_backward_res = grad_net(x, y) | |||
| # pynative mode | |||
| context.set_context(mode=context.PYNATIVE_MODE) | |||
| if_after_if_net = IfAfterIfNet() | |||
| net = GradNet(if_after_if_net) | |||
| pynative_forward_res = if_after_if_net(x) | |||
| pynative_backward_res = net(x) | |||
| net = input_net() | |||
| grad_net = GradNet(net) | |||
| pynative_forward_res = net(x, y) | |||
| pynative_backward_res = grad_net(x, y) | |||
| assert graph_forward_res == pynative_forward_res | |||
| assert graph_backward_res == pynative_backward_res | |||
| def test_if_after_if(): | |||
| x = Tensor(2, mstype.int32) | |||
| y = Tensor(5, mstype.int32) | |||
| control_flow_if_after_if(IfAfterIfNet, x, y) | |||
| def test_if_after_if_01(): | |||
| x = Tensor(2, mstype.int32) | |||
| y = Tensor(5, mstype.int32) | |||
| control_flow_if_after_if(IfAfterIfNet1, x, y) | |||
| def test_if_after_if_02(): | |||
| x = Tensor(2, mstype.int32) | |||
| y = Tensor(5, mstype.int32) | |||
| control_flow_if_after_if(IfAfterIfNet2, x, y) | |||
| @@ -21,47 +21,146 @@ from mindspore.common.parameter import Parameter | |||
| grad_all = C.GradOperation(get_all=True) | |||
| context.set_context(device_target="Ascend") | |||
| def test_if_after_if_in_if(): | |||
| class IfAfterIfInIfNet(nn.Cell): | |||
| def __init__(self): | |||
| super().__init__() | |||
| self.param_a = Parameter(Tensor(5, mstype.int32), name='a') | |||
| self.param_b = Parameter(Tensor(4, mstype.int32), name='b') | |||
| def construct(self, x): | |||
| out = x + self.param_b | |||
| if self.param_a > self.param_b: | |||
| x += 5 | |||
| if x > self.param_a: | |||
| self.param_b += 1 | |||
| self.param_b += 3 | |||
| if x < self.param_b: | |||
| out += self.param_b | |||
| return out | |||
| class GradNet(nn.Cell): | |||
| def __init__(self, net): | |||
| super(GradNet, self).__init__() | |||
| self.net = net | |||
| def construct(self, *inputs): | |||
| return grad_all(self.net)(*inputs) | |||
| x = Tensor(2, mstype.int32) | |||
| class IfAfterIfInIfNet(nn.Cell): | |||
| def __init__(self): | |||
| super().__init__() | |||
| self.param_a = Parameter(Tensor(5, mstype.int32), name='a') | |||
| self.param_b = Parameter(Tensor(4, mstype.int32), name='b') | |||
| def construct(self, x): | |||
| out = x + self.param_b | |||
| if self.param_a > self.param_b: | |||
| x += 5 | |||
| if x > self.param_a: | |||
| self.param_b += 1 | |||
| self.param_b += 3 | |||
| if x < self.param_b: | |||
| out += self.param_b | |||
| return out | |||
| class IfAfterIfInIfNet1(nn.Cell): | |||
| def __init__(self): | |||
| super().__init__() | |||
| self.param_a = Parameter(Tensor(5, mstype.int32), name='a') | |||
| self.param_b = Parameter(Tensor(4, mstype.int32), name='b') | |||
| def construct(self, x): | |||
| out = x + self.param_b | |||
| x = self.func(x) | |||
| if x < self.param_b: | |||
| out += self.param_b | |||
| return out | |||
| def func(self, x): | |||
| if self.param_a > self.param_b: | |||
| x += 5 | |||
| if x > self.param_a: | |||
| self.param_b += 1 | |||
| self.param_b += 3 | |||
| return x | |||
| class IfAfterIfInIfNet2(nn.Cell): | |||
| def __init__(self): | |||
| super().__init__() | |||
| self.param_a = Parameter(Tensor(5, mstype.int32), name='a') | |||
| self.param_b = Parameter(Tensor(4, mstype.int32), name='b') | |||
| def construct(self, x): | |||
| out = x + self.param_b | |||
| x = self.func(x) | |||
| if x < self.param_b: | |||
| out += self.param_b | |||
| return out | |||
| def func(self, x): | |||
| if self.subfunc(x): | |||
| x += 5 | |||
| self.param_b += 3 | |||
| return x | |||
| def subfunc(self, x): | |||
| if x > self.param_a: | |||
| self.param_b += 1 | |||
| return True | |||
| self.param_b -= 1 | |||
| return False | |||
| class IfAfterIfInIfNet3(nn.Cell): | |||
| def __init__(self): | |||
| super().__init__() | |||
| self.param_a = Parameter(Tensor(5, mstype.int32), name='a') | |||
| self.param_b = Parameter(Tensor(4, mstype.int32), name='b') | |||
| def construct(self, x): | |||
| out = x + self.param_b | |||
| x = self.func(x) | |||
| if x < self.param_b: | |||
| out += self.param_b | |||
| return out | |||
| def func(self, x): | |||
| if self.subfunc(x) > self.param_a: | |||
| x += 5 | |||
| self.param_b += 3 | |||
| return x | |||
| def subfunc(self, x): | |||
| if x > self.param_a: | |||
| x -= self.param_b | |||
| self.param_b += 1 | |||
| else: | |||
| x += self.param_b | |||
| self.param_b -= 1 | |||
| return x | |||
| class GradNet(nn.Cell): | |||
| def __init__(self, net): | |||
| super(GradNet, self).__init__() | |||
| self.net = net | |||
| def construct(self, *inputs): | |||
| return grad_all(self.net)(*inputs) | |||
| def control_flow_if_after_if_in_if(input_net, x): | |||
| # graph mode | |||
| context.set_context(mode=context.GRAPH_MODE) | |||
| if_after_if_in_if_net = IfAfterIfInIfNet() | |||
| net = GradNet(if_after_if_in_if_net) | |||
| graph_forward_res = if_after_if_in_if_net(x) | |||
| graph_backward_res = net(x) | |||
| net = input_net() | |||
| grad_net = GradNet(net) | |||
| graph_forward_res = net(x) | |||
| graph_backward_res = grad_net(x) | |||
| # pynative mode | |||
| context.set_context(mode=context.PYNATIVE_MODE) | |||
| if_after_if_in_if_net = IfAfterIfInIfNet() | |||
| net = GradNet(if_after_if_in_if_net) | |||
| pynative_forward_res = if_after_if_in_if_net(x) | |||
| pynative_backward_res = net(x) | |||
| net = input_net() | |||
| grad_net = GradNet(net) | |||
| pynative_forward_res = net(x) | |||
| pynative_backward_res = grad_net(x) | |||
| assert graph_forward_res == pynative_forward_res | |||
| assert graph_backward_res == pynative_backward_res | |||
| def test_if_after_if_in_if(): | |||
| x = Tensor(2, mstype.int32) | |||
| control_flow_if_after_if_in_if(IfAfterIfInIfNet, x) | |||
| def test_if_after_if_in_if_01(): | |||
| x = Tensor(2, mstype.int32) | |||
| control_flow_if_after_if_in_if(IfAfterIfInIfNet1, x) | |||
| def test_if_after_if_in_if_02(): | |||
| x = Tensor(2, mstype.int32) | |||
| control_flow_if_after_if_in_if(IfAfterIfInIfNet2, x) | |||
| def test_if_after_if_in_if_03(): | |||
| x = Tensor(2, mstype.int32) | |||
| control_flow_if_after_if_in_if(IfAfterIfInIfNet3, x) | |||
| @@ -21,46 +21,138 @@ from mindspore.common.parameter import Parameter | |||
| grad_all = C.GradOperation(get_all=True) | |||
| context.set_context(device_target="Ascend") | |||
| def test_if_after_if_in_for(): | |||
| class IfAfterIfInForNet(nn.Cell): | |||
| def __init__(self): | |||
| super().__init__() | |||
| self.param_a = Parameter(Tensor(5, mstype.int32), name='a') | |||
| self.param_b = Parameter(Tensor(4, mstype.int32), name='b') | |||
| def construct(self, x): | |||
| out = x + self.param_b | |||
| for _ in range(4): | |||
| if out <= 20: | |||
| out += self.param_a | |||
| self.param_b += 3 | |||
| if x < self.param_b: | |||
| out -= self.param_b | |||
| return out | |||
| class GradNet(nn.Cell): | |||
| def __init__(self, net): | |||
| super(GradNet, self).__init__() | |||
| self.net = net | |||
| def construct(self, *inputs): | |||
| return grad_all(self.net)(*inputs) | |||
| x = Tensor(2, mstype.int32) | |||
| class IfAfterIfInForNet(nn.Cell): | |||
| def __init__(self): | |||
| super().__init__() | |||
| self.param_a = Parameter(Tensor(5, mstype.int32), name='a') | |||
| self.param_b = Parameter(Tensor(4, mstype.int32), name='b') | |||
| def construct(self, x): | |||
| out = x + self.param_b | |||
| for _ in range(4): | |||
| if out <= 20: | |||
| out += self.param_a | |||
| self.param_b += 3 | |||
| if x < self.param_b: | |||
| out -= self.param_b | |||
| return out | |||
| class IfAfterIfInForNet1(nn.Cell): | |||
| def __init__(self): | |||
| super().__init__() | |||
| self.param_a = Parameter(Tensor(5, mstype.int32), name='a') | |||
| self.param_b = Parameter(Tensor(4, mstype.int32), name='b') | |||
| def construct(self, x): | |||
| out = self.func(x) | |||
| if x < self.param_b: | |||
| out -= self.param_b | |||
| return out | |||
| def func(self, x): | |||
| out = x + self.param_b | |||
| for _ in range(4): | |||
| if out <= 20: | |||
| out += self.param_a | |||
| self.param_b += 3 | |||
| return out | |||
| class IfAfterIfInForNet2(nn.Cell): | |||
| def __init__(self): | |||
| super().__init__() | |||
| self.param_a = Parameter(Tensor(5, mstype.int32), name='a') | |||
| self.param_b = Parameter(Tensor(4, mstype.int32), name='b') | |||
| def construct(self, x): | |||
| out = self.func(x) | |||
| if x < self.param_b: | |||
| out -= self.param_b | |||
| return out | |||
| def func(self, x): | |||
| out = x + self.param_b | |||
| for _ in range(4): | |||
| out = self.subfunc(out) | |||
| self.param_b += 3 | |||
| return out | |||
| def subfunc(self, x): | |||
| if x <= 20: | |||
| x += self.param_a | |||
| return x | |||
| class IfAfterIfInForNet3(nn.Cell): | |||
| def __init__(self): | |||
| super().__init__() | |||
| self.param_a = Parameter(Tensor(5, mstype.int32), name='a') | |||
| self.param_b = Parameter(Tensor(4, mstype.int32), name='b') | |||
| def construct(self, x): | |||
| out = self.func(x) | |||
| if x < self.param_b: | |||
| out -= self.param_b | |||
| return out | |||
| def func(self, x): | |||
| out = x + self.param_b | |||
| for _ in range(3): | |||
| out += self.subfunc(x) | |||
| self.param_b += 3 | |||
| return out | |||
| def subfunc(self, x): | |||
| if x > 10: | |||
| return self.param_a | |||
| return self.param_b | |||
| class GradNet(nn.Cell): | |||
| def __init__(self, net): | |||
| super(GradNet, self).__init__() | |||
| self.net = net | |||
| def construct(self, *inputs): | |||
| return grad_all(self.net)(*inputs) | |||
| def control_flow_if_after_if_in_for(input_net, x): | |||
| # graph mode | |||
| context.set_context(mode=context.GRAPH_MODE) | |||
| if_after_if_in_for_net = IfAfterIfInForNet() | |||
| net = GradNet(if_after_if_in_for_net) | |||
| graph_forward_res = if_after_if_in_for_net(x) | |||
| graph_backward_res = net(x) | |||
| net = input_net() | |||
| grad_net = GradNet(net) | |||
| graph_forward_res = net(x) | |||
| graph_backward_res = grad_net(x) | |||
| # pynative mode | |||
| context.set_context(mode=context.PYNATIVE_MODE) | |||
| if_after_if_in_for_net = IfAfterIfInForNet() | |||
| net = GradNet(if_after_if_in_for_net) | |||
| pynative_forward_res = if_after_if_in_for_net(x) | |||
| pynative_backward_res = net(x) | |||
| net = input_net() | |||
| grad_net = GradNet(net) | |||
| pynative_forward_res = net(x) | |||
| pynative_backward_res = grad_net(x) | |||
| assert graph_forward_res == pynative_forward_res | |||
| assert graph_backward_res == pynative_backward_res | |||
| def test_if_after_if_in_for(): | |||
| x = Tensor(2, mstype.int32) | |||
| control_flow_if_after_if_in_for(IfAfterIfInForNet, x) | |||
| def test_if_after_if_in_for_01(): | |||
| x = Tensor(2, mstype.int32) | |||
| control_flow_if_after_if_in_for(IfAfterIfInForNet1, x) | |||
| def test_if_after_if_in_for_02(): | |||
| x = Tensor(2, mstype.int32) | |||
| control_flow_if_after_if_in_for(IfAfterIfInForNet2, x) | |||
| def test_if_after_if_in_for_03(): | |||
| x = Tensor(2, mstype.int32) | |||
| control_flow_if_after_if_in_for(IfAfterIfInForNet3, x) | |||