|
|
|
@@ -83,7 +83,7 @@ class Model: |
|
|
|
>>> return out |
|
|
|
>>> |
|
|
|
>>> net = Net() |
|
|
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits() |
|
|
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) |
|
|
|
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9) |
|
|
|
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None) |
|
|
|
>>> dataset = get_dataset() |
|
|
|
@@ -400,7 +400,7 @@ class Model: |
|
|
|
Examples: |
|
|
|
>>> dataset = get_dataset() |
|
|
|
>>> net = Net() |
|
|
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits() |
|
|
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) |
|
|
|
>>> loss_scale_manager = FixedLossScaleManager() |
|
|
|
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9) |
|
|
|
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None, loss_scale_manager=loss_scale_manager) |
|
|
|
@@ -523,7 +523,7 @@ class Model: |
|
|
|
Examples: |
|
|
|
>>> dataset = get_dataset() |
|
|
|
>>> net = Net() |
|
|
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits() |
|
|
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) |
|
|
|
>>> model = Model(net, loss_fn=loss, optimizer=None, metrics={'acc'}) |
|
|
|
>>> model.eval(dataset) |
|
|
|
""" |
|
|
|
|