|
|
|
@@ -187,8 +187,8 @@ class RMSELoss(_Loss): |
|
|
|
|
|
|
|
|
|
|
|
Inputs: |
|
|
|
- **logits** (Tensor) - Tensor of shape :math:`(x_1, x_2, ..., x_R)`. |
|
|
|
- **label** (Tensor) - Tensor of shape :math:`(y_1, y_2, ..., y_S)`. |
|
|
|
- **logits** (Tensor) - Tensor of shape :math:`(x_1, x_2, ..., x_M)`. |
|
|
|
- **label** (Tensor) - Tensor of shape :math:`(y_1, y_2, ..., y_N)`. |
|
|
|
|
|
|
|
Outputs: |
|
|
|
Tensor, weighted loss float tensor. |
|
|
|
@@ -219,19 +219,20 @@ class MAELoss(_Loss): |
|
|
|
MAELoss creates a standard to measure the average absolute error between :math:`x` and :math:`y` |
|
|
|
element-wise, where :math:`x` is the input and :math:`y` is the target. |
|
|
|
|
|
|
|
For simplicity, let :math:`x` and :math:`y` be 1-dimensional Tensor with length :math:`N`, |
|
|
|
For simplicity, let :math:`x` and :math:`y` be 1-dimensional Tensor with length :math:`M` and :math:`N`, |
|
|
|
the unreduced loss (i.e. with argument reduction set to 'none') of :math:`x` and :math:`y` is given as: |
|
|
|
|
|
|
|
.. math:: |
|
|
|
\text{MAE} = \frac{1}{M}\sum_{m=1}^N\left| x_m - y_m \right| |
|
|
|
MAE = \begin{cases} \sqrt{\frac{1}{M}\sum_{m=1,n=1}^{M,N}{|x_m-y_n|}}, & \text {if M > N } \\\\ |
|
|
|
\sqrt{\frac{1}{N}\sum_{m=1,n=1}^{M,N}{|x_m-y_n|}}, &\text{if M < N } \end{cases} |
|
|
|
|
|
|
|
Args: |
|
|
|
reduction (str): Type of reduction to be applied to loss. The optional values are "mean", "sum", and "none". |
|
|
|
Default: "mean". |
|
|
|
|
|
|
|
Inputs: |
|
|
|
- **logits** (Tensor) - Tensor of shape :math:`(x_1, x_2, ..., x_R)`. |
|
|
|
- **label** (Tensor) - Tensor of shape :math:`(y_1, y_2, ..., y_S)`. |
|
|
|
- **logits** (Tensor) - Tensor of shape :math:`(x_1, x_2, ..., x_M)`. |
|
|
|
- **label** (Tensor) - Tensor of shape :math:`(y_1, y_2, ..., y_N)`. |
|
|
|
|
|
|
|
Outputs: |
|
|
|
Tensor, weighted loss float tensor. |
|
|
|
@@ -488,9 +489,9 @@ class MultiClassDiceLoss(_Loss): |
|
|
|
Default: 'softmax'. Choose from: ['softmax', 'logsoftmax', 'relu', 'relu6', 'tanh','Sigmoid'] |
|
|
|
|
|
|
|
Inputs: |
|
|
|
- **y_pred** (Tensor) - Tensor of shape (N, C, ...). y_pred dimension should be greater than 1. The data type |
|
|
|
must be float16 or float32. |
|
|
|
- **y** (Tensor) - Tensor of shape (N, C, ...). y dimension should be greater than 1. The data type must be |
|
|
|
- **y_pred** (Tensor) - Tensor of shape (N, C, ...). The y_pred dimension should be greater than 1. The data |
|
|
|
type must be float16 or float32. |
|
|
|
- **y** (Tensor) - Tensor of shape (N, C, ...). The y dimension should be greater than 1. The data type must be |
|
|
|
float16 or float32. |
|
|
|
|
|
|
|
Outputs: |
|
|
|
|