|
|
@@ -0,0 +1,114 @@ |
|
|
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
|
|
# |
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
|
|
# You may obtain a copy of the License at |
|
|
|
|
|
# |
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
|
|
# |
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
|
|
# limitations under the License. |
|
|
|
|
|
import os |
|
|
|
|
|
import numpy as np |
|
|
|
|
|
import pytest |
|
|
|
|
|
|
|
|
|
|
|
import mindspore.nn as nn |
|
|
|
|
|
from mindspore import context |
|
|
|
|
|
from mindspore.common.tensor import Tensor |
|
|
|
|
|
from mindspore.common.initializer import TruncatedNormal |
|
|
|
|
|
from mindspore.common.parameter import ParameterTuple |
|
|
|
|
|
from mindspore.ops import operations as P |
|
|
|
|
|
from mindspore.ops import composite as C |
|
|
|
|
|
from mindspore.train.serialization import export |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def weight_variable(): |
|
|
|
|
|
return TruncatedNormal(0.02) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): |
|
|
|
|
|
weight = weight_variable() |
|
|
|
|
|
return nn.Conv2d(in_channels, out_channels, |
|
|
|
|
|
kernel_size=kernel_size, stride=stride, padding=padding, |
|
|
|
|
|
weight_init=weight, has_bias=False, pad_mode="valid") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def fc_with_initialize(input_channels, out_channels): |
|
|
|
|
|
weight = weight_variable() |
|
|
|
|
|
bias = weight_variable() |
|
|
|
|
|
return nn.Dense(input_channels, out_channels, weight, bias) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LeNet5(nn.Cell): |
|
|
|
|
|
def __init__(self): |
|
|
|
|
|
super(LeNet5, self).__init__() |
|
|
|
|
|
self.batch_size = 32 |
|
|
|
|
|
self.conv1 = conv(1, 6, 5) |
|
|
|
|
|
self.conv2 = conv(6, 16, 5) |
|
|
|
|
|
self.fc1 = fc_with_initialize(16 * 5 * 5, 120) |
|
|
|
|
|
self.fc2 = fc_with_initialize(120, 84) |
|
|
|
|
|
self.fc3 = fc_with_initialize(84, 10) |
|
|
|
|
|
self.relu = nn.ReLU() |
|
|
|
|
|
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) |
|
|
|
|
|
self.reshape = P.Reshape() |
|
|
|
|
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
|
|
x = self.conv1(x) |
|
|
|
|
|
x = self.relu(x) |
|
|
|
|
|
x = self.max_pool2d(x) |
|
|
|
|
|
x = self.conv2(x) |
|
|
|
|
|
x = self.relu(x) |
|
|
|
|
|
x = self.max_pool2d(x) |
|
|
|
|
|
x = self.reshape(x, (self.batch_size, -1)) |
|
|
|
|
|
x = self.fc1(x) |
|
|
|
|
|
x = self.relu(x) |
|
|
|
|
|
x = self.fc2(x) |
|
|
|
|
|
x = self.relu(x) |
|
|
|
|
|
x = self.fc3(x) |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class WithLossCell(nn.Cell): |
|
|
|
|
|
def __init__(self, network): |
|
|
|
|
|
super(WithLossCell, self).__init__(auto_prefix=False) |
|
|
|
|
|
self.loss = nn.SoftmaxCrossEntropyWithLogits() |
|
|
|
|
|
self.network = network |
|
|
|
|
|
|
|
|
|
|
|
def construct(self, x, label): |
|
|
|
|
|
predict = self.network(x) |
|
|
|
|
|
return self.loss(predict, label) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TrainOneStepCell(nn.Cell): |
|
|
|
|
|
def __init__(self, network): |
|
|
|
|
|
super(TrainOneStepCell, self).__init__(auto_prefix=False) |
|
|
|
|
|
self.network = network |
|
|
|
|
|
self.network.set_train() |
|
|
|
|
|
self.weights = ParameterTuple(network.trainable_params()) |
|
|
|
|
|
self.optimizer = nn.Momentum(self.weights, 0.1, 0.9) |
|
|
|
|
|
self.hyper_map = C.HyperMap() |
|
|
|
|
|
self.grad = C.GradOperation(get_by_list=True) |
|
|
|
|
|
|
|
|
|
|
|
def construct(self, x, label): |
|
|
|
|
|
weights = self.weights |
|
|
|
|
|
grads = self.grad(self.network, weights)(x, label) |
|
|
|
|
|
return self.optimizer(grads) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
|
|
@pytest.mark.platform_x86_ascend_training |
|
|
|
|
|
@pytest.mark.platform_arm_ascend_training |
|
|
|
|
|
@pytest.mark.env_onecard |
|
|
|
|
|
def test_export_lenet_grad_mindir(): |
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") |
|
|
|
|
|
network = LeNet5() |
|
|
|
|
|
network.set_train() |
|
|
|
|
|
predict = Tensor(np.ones([32, 1, 32, 32]).astype(np.float32) * 0.01) |
|
|
|
|
|
label = Tensor(np.zeros([32, 10]).astype(np.float32)) |
|
|
|
|
|
net = TrainOneStepCell(WithLossCell(network)) |
|
|
|
|
|
export(net, predict, label, file_name="lenet_grad", file_format='MINDIR') |
|
|
|
|
|
verify_name = "lenet_grad.mindir" |
|
|
|
|
|
assert os.path.exists(verify_name) |