commit 2 lint fix lint fix 2 updated backprop + st test test_file_fix test_file_fix_2 fixed header_guards comments addressed clangFormatFixtags/v0.7.0-beta
| @@ -0,0 +1,182 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include <assert.h> | |||||
| #include <stdio.h> | |||||
| #include <stdint.h> | |||||
| #include "backend/kernel_compiler/gpu/cuda_impl/mirror_pad_impl.cuh" | |||||
| __inline__ __device__ bool range_check(int x, int y, int padded_width, int padded_height) { | |||||
| // check for existence in current padded array | |||||
| if (((x >= 0) && (x <= padded_width - 1)) && ((y >= 0) && (y <= padded_height - 1))) { | |||||
| return true; | |||||
| } | |||||
| return false; | |||||
| } | |||||
| template <typename T> | |||||
| __global__ void MirrorPad(const size_t size, const T *input, const int num, const int channels, const int old_height, | |||||
| const int old_width, const int padded_height, const int padded_width, const int padd_dim, | |||||
| const int *paddings, int mode, T *output) { | |||||
| int padd_offset = 4 * (padd_dim - 2); | |||||
| int pad_left_ = paddings[padd_offset + 4]; | |||||
| int pad_top_ = paddings[padd_offset + 0]; | |||||
| // Create anchor points for old tensor positions inside new tensor | |||||
| int ap1_x = pad_left_; | |||||
| int ap1_y = pad_top_; | |||||
| int ap2_x = pad_left_ + old_width - 1; | |||||
| int ap2_y = pad_top_ + old_height - 1; | |||||
| for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size; pos += blockDim.x * gridDim.x) { | |||||
| int block_num = (pos / padded_width) / padded_height; | |||||
| const int padded_x = pos % padded_width; | |||||
| const int padded_y = (pos / padded_width) % padded_height; | |||||
| // distance to move from anchor point | |||||
| int x_dist = 0; | |||||
| int y_dist = 0; | |||||
| // x,y value to mirror in new tenspr | |||||
| int matchval_x_index = padded_x; | |||||
| int matchval_y_index = padded_y; | |||||
| if (padded_y - pad_top_ < 0 || padded_x - pad_left_ < 0 || padded_y - pad_top_ >= old_height || | |||||
| padded_x - pad_left_ >= old_width) { | |||||
| if ((padded_x < ap1_x) || (padded_x > ap2_x)) { | |||||
| x_dist = (padded_x < ap1_x) ? (ap1_x - padded_x) : (padded_x - ap2_x); // GEN DIST | |||||
| matchval_x_index = (padded_x < ap1_x) ? (ap1_x + x_dist - mode) : (ap2_x - x_dist + mode); | |||||
| } | |||||
| if ((padded_y < ap1_y) || (padded_y > ap2_y)) { | |||||
| y_dist = (padded_y < ap1_y) ? (ap1_y - padded_y) : (padded_y - ap2_y); | |||||
| matchval_y_index = (padded_y < ap1_y) ? (ap1_y + y_dist - mode) : (ap2_y - y_dist + mode); | |||||
| } | |||||
| output[pos] = | |||||
| input[(block_num * old_height + matchval_y_index - pad_top_) * old_width + matchval_x_index - pad_left_]; | |||||
| } else { | |||||
| // existing values remain the same | |||||
| output[pos] = input[(block_num * old_height + padded_y - pad_top_) * old_width + padded_x - pad_left_]; | |||||
| } | |||||
| } | |||||
| return; | |||||
| } | |||||
| template <typename T> | |||||
| __global__ void MirrorPadGrad(const size_t size, const T *dy, const int num, const int channels, | |||||
| const int padded_height, const int padded_width, const int old_height, | |||||
| const int old_width, const int padd_dim, const int *paddings, int mode, T *dx) { | |||||
| int padd_offset = 4 * (padd_dim - 2); | |||||
| int pad_left_ = paddings[padd_offset + 4]; | |||||
| int pad_top_ = paddings[padd_offset + 0]; | |||||
| // Create anchor points for positions in the dy array | |||||
| int ap1_x = pad_left_; | |||||
| int ap1_y = pad_top_; | |||||
| int ap2_x = pad_left_ + old_width - 1; | |||||
| int ap2_y = pad_top_ + old_height - 1; | |||||
| int adjust = 0; // adjust dist from reflection axis for symmetric padding | |||||
| if (mode == 1) { | |||||
| adjust = 1; | |||||
| } | |||||
| for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size; pos += blockDim.x * gridDim.x) { | |||||
| int block_num = (pos / old_width) / old_height; | |||||
| // refer to indices of original values inside padded array | |||||
| const int padded_x = (pos % old_width) + pad_left_; | |||||
| const int padded_y = ((pos / old_width) % old_height) + pad_top_; | |||||
| // copy positions own value into output | |||||
| dx[pos] = dx[pos] + dy[(block_num * padded_height + padded_y) * padded_width + padded_x]; | |||||
| int x_dist_1 = (ap1_x - padded_x - adjust); | |||||
| int y_dist_1 = (ap1_y - padded_y - adjust); | |||||
| int x_dist_2 = (ap2_x - padded_x + adjust); | |||||
| int y_dist_2 = (ap2_y - padded_y + adjust); | |||||
| int axis_dist[] = {x_dist_1, x_dist_2, y_dist_1, y_dist_2}; | |||||
| int anch_point[] = {ap1_x, ap2_x, ap1_y, ap2_y}; | |||||
| bool x_axis_check[] = {true, true, false, false}; // true - update X , false - update Y | |||||
| int temp_x = 0; | |||||
| int temp_y = 0; | |||||
| // mirroring in axis lines | |||||
| for (int x = 0; x < 4; x++) { | |||||
| if (axis_dist[x] != 0) { | |||||
| if (x_axis_check[x]) { | |||||
| temp_y = padded_y; | |||||
| temp_x = anch_point[x] + axis_dist[x]; | |||||
| } else { | |||||
| temp_x = padded_x; | |||||
| temp_y = anch_point[x] + axis_dist[x]; | |||||
| } | |||||
| if (range_check(temp_x, temp_y, padded_width, padded_height)) { | |||||
| dx[pos] = dx[pos] + dy[(block_num * padded_height + temp_y) * padded_width + temp_x]; | |||||
| } | |||||
| } | |||||
| } | |||||
| // mirroring at corners | |||||
| for (int x = 0; x < 2; x++) { | |||||
| for (int y = 2; y < 4; y++) { | |||||
| if ((axis_dist[x] != 0) && (axis_dist[y] != 0)) { | |||||
| temp_x = anch_point[x] + axis_dist[x]; | |||||
| temp_y = anch_point[y] + axis_dist[y]; | |||||
| if (range_check(temp_x, temp_y, padded_width, padded_height)) { | |||||
| dx[pos] = dx[pos] + dy[(block_num * padded_height + temp_y) * padded_width + temp_x]; | |||||
| } | |||||
| } | |||||
| } | |||||
| } | |||||
| } | |||||
| return; | |||||
| } | |||||
| template <typename T> | |||||
| void CalMirrorPad(const size_t size, const T *input, const int num, const int channels, const int old_height, | |||||
| const int old_width, const int padded_height, const int padded_width, int padd_num, | |||||
| const int *paddings, const int mode, T *output, cudaStream_t cuda_stream) { | |||||
| MirrorPad<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>( | |||||
| size, input, num, channels, old_height, old_width, padded_height, padded_width, padd_num, paddings, mode, output); | |||||
| return; | |||||
| } | |||||
| template <typename T> | |||||
| void CalMirrorPadGrad(const size_t size, const T *dy, const int num, const int channels, const int padded_height, | |||||
| const int padded_width, const int old_height, const int old_width, const int padd_dim, | |||||
| const int *paddings, int mode, T *dx, cudaStream_t cuda_stream) { | |||||
| MirrorPadGrad<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, dy, num, channels, padded_height, padded_width, | |||||
| old_height, old_width, padd_dim, paddings, mode, dx); | |||||
| return; | |||||
| } | |||||
| template void CalMirrorPad<float>(const size_t size, const float *input, const int num, const int channels, | |||||
| const int old_height, const int old_width, const int padded_height, | |||||
| const int padded_width, int padd_num, const int *paddings, int mode, float *output, | |||||
| cudaStream_t cuda_stream); | |||||
| template void CalMirrorPadGrad<float>(const size_t size, const float *dy, const int num, const int channels, | |||||
| const int old_height, const int old_width, const int padded_height, | |||||
| const int padded_width, const int padd_dim, const int *paddings, int mode, | |||||
| float *dx, cudaStream_t cuda_stream); | |||||
| template void CalMirrorPad<half>(const size_t size, const half *input, const int num, const int channels, | |||||
| const int old_height, const int old_width, const int padded_height, | |||||
| const int padded_width, int padd_num, const int *paddings, int mode, half *output, | |||||
| cudaStream_t cuda_stream); | |||||
| template void CalMirrorPadGrad<half>(const size_t size, const half *dy, const int num, const int channels, | |||||
| const int old_height, const int old_width, const int padded_height, | |||||
| const int padded_width, const int padd_dim, const int *paddings, int mode, | |||||
| half *dx, cudaStream_t cuda_stream); | |||||
| @@ -0,0 +1,31 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_MIRROR_PAD_IMPL_H_ | |||||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_MIRROR_PAD_IMPL_H_ | |||||
| #include <cuda_runtime.h> | |||||
| #include "runtime/device/gpu/cuda_common.h" | |||||
| template <typename T> | |||||
| void CalMirrorPad(const size_t size, const T *input, const int num, const int channels, const int old_height, | |||||
| const int old_width, const int padded_height, const int padded_width, int padd_num, | |||||
| const int *paddings, int mode, T *output, cudaStream_t cuda_stream); | |||||
| template <typename T> | |||||
| void CalMirrorPadGrad(const size_t size, const T *dy, const int num, const int channels, const int padded_height, | |||||
| const int padded_width, const int old_height, const int old_width, const int padd_dim, | |||||
| const int *paddings, int mode, T *dx, cudaStream_t cuda_stream); | |||||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_MIRROR_PAD_IMPL_H_ | |||||
| @@ -0,0 +1,30 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "backend/kernel_compiler/gpu/nn/mirror_pad_gpu_kernel.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| MS_REG_GPU_KERNEL_ONE( | |||||
| MirrorPad, | |||||
| KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeFloat32), | |||||
| MirrorPadGpuFwdKernel, float) | |||||
| MS_REG_GPU_KERNEL_ONE( | |||||
| MirrorPad, | |||||
| KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeFloat16), | |||||
| MirrorPadGpuFwdKernel, half) | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,150 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_MIRROR_PAD_GPU_KERNEL_H_ | |||||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_MIRROR_PAD_GPU_KERNEL_H_ | |||||
| #include <iostream> | |||||
| #include <vector> | |||||
| #include <string> | |||||
| #include "backend/kernel_compiler/gpu/gpu_kernel.h" | |||||
| #include "backend/kernel_compiler/gpu/gpu_kernel_factory.h" | |||||
| #include "backend/kernel_compiler/gpu/cuda_impl/mirror_pad_impl.cuh" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| template <typename T> | |||||
| class MirrorPadGpuFwdKernel : public GpuKernel { | |||||
| public: | |||||
| MirrorPadGpuFwdKernel() | |||||
| : num_input_(0), num_paddings_(0), mode_(0), input_size_(1), output_size_(1), workspace_size_(0) {} | |||||
| ~MirrorPadGpuFwdKernel() override = default; | |||||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||||
| const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } | |||||
| const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } | |||||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||||
| const std::vector<AddressPtr> &outputs, void *stream_ptr) override { | |||||
| T *input = GetDeviceAddress<T>(inputs, 0); | |||||
| int *paddings = GetDeviceAddress<int>(inputs, 1); | |||||
| T *output = GetDeviceAddress<T>(outputs, 0); | |||||
| size_t size = output_size_ / sizeof(T); | |||||
| int dim_offset = output_shape_.size() - 2; | |||||
| CalMirrorPad(size, input, input_shape_[0], input_shape_[1], input_shape_[2], input_shape_[3], | |||||
| output_shape_[dim_offset + 0], output_shape_[dim_offset + 1], num_paddings_, paddings, mode_, output, | |||||
| reinterpret_cast<cudaStream_t>(stream_ptr)); | |||||
| return true; | |||||
| } | |||||
| bool Init(const CNodePtr &kernel_node) override { | |||||
| size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); | |||||
| if (input_num != 2) { | |||||
| MS_LOG(ERROR) << "Input number is " << input_num << ", but MirrorPad needs 2 input."; | |||||
| return false; | |||||
| } | |||||
| // check number of output -> should be 1 | |||||
| size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node); | |||||
| if (output_num != 1) { | |||||
| MS_LOG(ERROR) << "Output number is " << output_num << ", but Pad needs 1 output."; | |||||
| return false; | |||||
| } | |||||
| string mode = GetValue<string>(AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("mode")); | |||||
| if (mode == "REFLECT") { | |||||
| mode_ = 0; // reflected mirroring | |||||
| } else { | |||||
| mode_ = 1; // symmetric mirroring | |||||
| } | |||||
| auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||||
| // shape adjustement -> from 2d/3d to 4d to standardize | |||||
| if (input_shape.size() == 4) { | |||||
| } else if (input_shape.size() == 3) { | |||||
| auto it = input_shape.begin(); | |||||
| input_shape.insert(it, 1); // batch padding | |||||
| } else if (input_shape.size() == 2) { | |||||
| auto it = input_shape.begin(); | |||||
| input_shape.insert(it, 2, 1); // channel padding | |||||
| } | |||||
| for (auto in_shape : input_shape) { | |||||
| input_size_ *= in_shape; | |||||
| input_shape_.push_back(in_shape); | |||||
| } | |||||
| num_input_ = input_size_; | |||||
| input_size_ *= sizeof(T); | |||||
| auto padding_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1); | |||||
| num_paddings_ = padding_shape[0]; | |||||
| input_size_ += 2 * num_paddings_ * sizeof(int); | |||||
| output_size_ = sizeof(T); | |||||
| auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0); | |||||
| for (auto x : output_shape) { | |||||
| output_size_ *= x; | |||||
| output_shape_.push_back(x); | |||||
| } | |||||
| int max_width = input_shape_[3]; | |||||
| int max_height = input_shape_[2]; | |||||
| // basic error check for padding value | |||||
| if (mode_ == 1) { // symmetric | |||||
| max_width = max_width + (2 * max_width); | |||||
| max_height = max_height + (2 * max_height); | |||||
| } else { // reflect | |||||
| max_width = max_width + (2 * (max_width - 1)); | |||||
| max_height = max_height + (2 * (max_height - 1)); | |||||
| } | |||||
| if (output_shape_[(output_shape_.size() - 2) + 0] > max_width || | |||||
| output_shape_[(output_shape_.size() - 2) + 1] > max_width) { | |||||
| MS_LOG(ERROR) << "ERROR: Padding value too high for input Tensor on 1 or more dims"; | |||||
| return false; | |||||
| } | |||||
| InitSizeLists(); | |||||
| return true; | |||||
| } | |||||
| protected: | |||||
| void InitSizeLists() override { | |||||
| input_size_list_.push_back(num_input_ * sizeof(T)); | |||||
| input_size_list_.push_back(2 * num_paddings_ * sizeof(int)); | |||||
| output_size_list_.push_back(output_size_); | |||||
| } | |||||
| private: | |||||
| size_t num_input_; | |||||
| int num_paddings_; | |||||
| int mode_; | |||||
| std::vector<int> input_shape_; // dims of the input data | |||||
| std::vector<int> output_shape_; // dims of the output data | |||||
| // default | |||||
| size_t input_size_; | |||||
| size_t output_size_; | |||||
| size_t workspace_size_; | |||||
| std::vector<size_t> input_size_list_; | |||||
| std::vector<size_t> output_size_list_; | |||||
| std::vector<size_t> workspace_size_list_; | |||||
| }; | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_MIRROR_PAD_GPU_KERNEL_H_ | |||||
| @@ -0,0 +1,30 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "backend/kernel_compiler/gpu/nn/mirror_pad_grad_gpu_kernel.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| MS_REG_GPU_KERNEL_ONE( | |||||
| MirrorPadGrad, | |||||
| KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeFloat32), | |||||
| MirrorPadGpuBackKernel, float) | |||||
| MS_REG_GPU_KERNEL_ONE( | |||||
| MirrorPadGrad, | |||||
| KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeFloat16), | |||||
| MirrorPadGpuBackKernel, half) | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,150 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_MIRROR_PAD_GRAD_GPU_KERNEL_H_ | |||||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_MIRROR_PAD_GRAD_GPU_KERNEL_H_ | |||||
| #include <iostream> | |||||
| #include <vector> | |||||
| #include <string> | |||||
| #include "backend/kernel_compiler/gpu/gpu_kernel.h" | |||||
| #include "backend/kernel_compiler/gpu/gpu_kernel_factory.h" | |||||
| #include "backend/kernel_compiler/gpu/cuda_impl/mirror_pad_impl.cuh" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| template <typename T> | |||||
| class MirrorPadGpuBackKernel : public GpuKernel { | |||||
| public: | |||||
| MirrorPadGpuBackKernel() | |||||
| : num_input_(0), num_paddings_(0), mode_(0), input_size_(1), output_size_(1), workspace_size_(0) {} | |||||
| ~MirrorPadGpuBackKernel() override = default; | |||||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||||
| const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } | |||||
| const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } | |||||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||||
| const std::vector<AddressPtr> &outputs, void *stream_ptr) override { | |||||
| T *input = GetDeviceAddress<T>(inputs, 0); | |||||
| int *paddings = GetDeviceAddress<int>(inputs, 1); | |||||
| T *output = GetDeviceAddress<T>(outputs, 0); | |||||
| size_t size = output_size_ / sizeof(T); | |||||
| int dim_offset = output_shape_.size() - 2; | |||||
| CalMirrorPadGrad(size, input, input_shape_[0], input_shape_[1], input_shape_[2], input_shape_[3], | |||||
| output_shape_[dim_offset + 0], output_shape_[dim_offset + 1], num_paddings_, paddings, mode_, | |||||
| output, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||||
| return true; | |||||
| } | |||||
| bool Init(const CNodePtr &kernel_node) override { | |||||
| size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); | |||||
| if (input_num != 2) { | |||||
| MS_LOG(ERROR) << "Input number is " << input_num << ", but MirrorPadGrad needs 2 input."; | |||||
| return false; | |||||
| } | |||||
| // check number of output -> should be 1 | |||||
| size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node); | |||||
| if (output_num != 1) { | |||||
| MS_LOG(ERROR) << "Output number is " << output_num << ", but MirrorPadGrad needs 1 output."; | |||||
| return false; | |||||
| } | |||||
| string mode = GetValue<string>(AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("mode")); | |||||
| if (mode == "REFLECT") { | |||||
| mode_ = 0; // reflected mirroring | |||||
| } else { | |||||
| mode_ = 1; // symmetric mirroring | |||||
| } | |||||
| auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||||
| // shape adjustement -> from 2d/3d to 4d to standardize | |||||
| if (input_shape.size() == 4) { | |||||
| } else if (input_shape.size() == 3) { | |||||
| auto it = input_shape.begin(); | |||||
| input_shape.insert(it, 1); // batch padding | |||||
| } else if (input_shape.size() == 2) { | |||||
| auto it = input_shape.begin(); | |||||
| input_shape.insert(it, 2, 1); // channel padding | |||||
| } | |||||
| for (auto in_shape : input_shape) { | |||||
| input_size_ *= in_shape; | |||||
| input_shape_.push_back(in_shape); | |||||
| } | |||||
| num_input_ = input_size_; | |||||
| input_size_ *= sizeof(T); | |||||
| auto padding_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1); | |||||
| num_paddings_ = padding_shape[0]; | |||||
| input_size_ += +(2 * num_paddings_ * sizeof(int)); | |||||
| output_size_ = sizeof(T); | |||||
| auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0); | |||||
| for (auto x : output_shape) { | |||||
| output_size_ *= x; | |||||
| output_shape_.push_back(x); | |||||
| } | |||||
| int max_width = input_shape_[3]; | |||||
| int max_height = input_shape_[2]; | |||||
| // basic error check for padding value | |||||
| if (mode_ == 1) { // symmetric | |||||
| max_width = max_width + (2 * max_width); | |||||
| max_height = max_height + (2 * max_height); | |||||
| } else { // reflect | |||||
| max_width = max_width + (2 * (max_width - 1)); | |||||
| max_height = max_height + (2 * (max_height - 1)); | |||||
| } | |||||
| if (output_shape_[(output_shape_.size() - 2) + 0] > max_width || | |||||
| output_shape_[(output_shape_.size() - 2) + 1] > max_width) { | |||||
| MS_LOG(ERROR) << "ERROR: Padding value too high for input Tensor on 1 or more DIMS"; | |||||
| return false; | |||||
| } | |||||
| InitSizeLists(); | |||||
| return true; | |||||
| } | |||||
| protected: | |||||
| void InitSizeLists() override { | |||||
| input_size_list_.push_back(num_input_ * sizeof(T)); | |||||
| input_size_list_.push_back(2 * num_paddings_ * sizeof(int)); | |||||
| output_size_list_.push_back(output_size_); | |||||
| } | |||||
| private: | |||||
| size_t num_input_; | |||||
| int num_paddings_; | |||||
| int mode_; | |||||
| std::vector<int> input_shape_; // dims of the input data | |||||
| std::vector<int> output_shape_; // dims of the output data | |||||
| // default | |||||
| size_t input_size_; | |||||
| size_t output_size_; | |||||
| size_t workspace_size_; | |||||
| std::vector<size_t> input_size_list_; | |||||
| std::vector<size_t> output_size_list_; | |||||
| std::vector<size_t> workspace_size_list_; | |||||
| }; | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_MIRROR_PAD_GRAD_GPU_KERNEL_H_ | |||||
| @@ -2757,12 +2757,17 @@ class MirrorPad(PrimitiveWithInfer): | |||||
| paddings_value = paddings['value'].asnumpy() | paddings_value = paddings['value'].asnumpy() | ||||
| paddings_size = paddings_value.size | paddings_size = paddings_value.size | ||||
| validator.check_integer('paddings.shape', paddings_size, len(x_shape) * 2, Rel.EQ, self.name) | validator.check_integer('paddings.shape', paddings_size, len(x_shape) * 2, Rel.EQ, self.name) | ||||
| if not np.all(paddings_size >= 0): | |||||
| if not np.all(paddings_value >= 0): | |||||
| raise ValueError('All elements of paddings must be >= 0.') | raise ValueError('All elements of paddings must be >= 0.') | ||||
| adjust = 0 | |||||
| if self.mode == 'SYMMETRIC': | |||||
| adjust = 1 | |||||
| for i in range(0, int(paddings_size / 2)): | |||||
| if (paddings_value[i, 0] >= x_shape[i] + adjust) or (paddings_value[i, 1] >= x_shape[i] + adjust): | |||||
| raise ValueError('At least one dim has too high a padding value for this input and mode') | |||||
| y_shape = () | y_shape = () | ||||
| for i in range(0, int(paddings_size / 2)): | for i in range(0, int(paddings_size / 2)): | ||||
| y_shape += ((x_shape[i] + paddings_value[i, 0] + paddings_value[i, 1]),) | y_shape += ((x_shape[i] + paddings_value[i, 0] + paddings_value[i, 1]),) | ||||
| return {'shape': y_shape, | return {'shape': y_shape, | ||||
| 'dtype': input_x['dtype'], | 'dtype': input_x['dtype'], | ||||
| 'value': None} | 'value': None} | ||||
| @@ -0,0 +1,88 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import pytest | |||||
| import numpy as np | |||||
| import mindspore | |||||
| import mindspore.nn as nn | |||||
| import mindspore.context as context | |||||
| from mindspore import Tensor | |||||
| from mindspore.ops.composite import GradOperation | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_mirror_pad(): | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| test1_arr_in = [[[[1, 2, 3], [4, 5, 6], [7, 8, 9]]]] | |||||
| test_1_paddings = ((0, 0), (0, 0), (1, 1), (2, 2)) | |||||
| test1_arr_exp = [[[[6, 5, 4, 5, 6, 5, 4], [3, 2, 1, 2, 3, 2, 1], [6, 5, 4, 5, 6, 5, 4], | |||||
| [9, 8, 7, 8, 9, 8, 7], [6, 5, 4, 5, 6, 5, 4]]]] | |||||
| test2_arr_in = [[[[1, 2, 3], [4, 5, 6], [7, 8, 9]]]] | |||||
| test_2_paddings = ((0, 0), (0, 0), (1, 1), (2, 2)) | |||||
| test2_arr_exp = [[[[2, 1, 1, 2, 3, 3, 2], [2, 1, 1, 2, 3, 3, 2], [5, 4, 4, 5, 6, 6, 5], | |||||
| [8, 7, 7, 8, 9, 9, 8], [8, 7, 7, 8, 9, 9, 8]]]] | |||||
| reflectOp = nn.Pad(mode='REFLECT', paddings=test_1_paddings) | |||||
| symmOp = nn.Pad(mode='SYMMETRIC', paddings=test_2_paddings) | |||||
| x_test_1 = Tensor(np.array(test1_arr_in), dtype=mindspore.float32) | |||||
| x_test_2 = Tensor(np.array(test2_arr_in), dtype=mindspore.float32) | |||||
| y_test_1 = reflectOp(x_test_1).asnumpy() | |||||
| y_test_2 = symmOp(x_test_2).asnumpy() | |||||
| print(np.array(test1_arr_in)) | |||||
| print(y_test_1) | |||||
| np.testing.assert_equal(np.array(test1_arr_exp), y_test_1) | |||||
| np.testing.assert_equal(np.array(test2_arr_exp), y_test_2) | |||||
| class Grad(nn.Cell): | |||||
| def __init__(self, network): | |||||
| super(Grad, self).__init__() | |||||
| self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.network = network | |||||
| def construct(self, input_, output_grad): | |||||
| return self.grad(self.network)(input_, output_grad) | |||||
| class Net(nn.Cell): | |||||
| def __init__(self): | |||||
| super(Net, self).__init__() | |||||
| self.pad = nn.Pad(mode="REFLECT", paddings=((0, 0), (0, 0), (1, 0), (0, 2))) | |||||
| def construct(self, x): | |||||
| return self.pad(x) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_mirror_pad_backprop(): | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| test_arr_in = [[[[1, 2, 3], [4, 5, 6], [7, 8, 9]]]] # size -> 3*3 | |||||
| test_arr_in = Tensor(test_arr_in, dtype=mindspore.float32) | |||||
| dy = (np.ones((1, 1, 4, 5)) * 0.1).astype(np.float32) | |||||
| expected_dx = np.array([[[[0.2, 0.2, 0.1], | |||||
| [0.4, 0.4, 0.2], | |||||
| [0.2, 0.2, 0.1]]]]) | |||||
| net = Grad(Net()) | |||||
| dx = net(test_arr_in, Tensor(dy)) | |||||
| dx = dx[0].asnumpy() | |||||
| np.testing.assert_array_almost_equal(dx, expected_dx) | |||||