Merge pull request !185 from jinyaohui/mastertags/v0.2.0-alpha
| @@ -67,7 +67,7 @@ if __name__ == '__main__': | |||||
| parser.add_argument("--distribute", type=bool, default=False, help="Run distribute, default is false.") | parser.add_argument("--distribute", type=bool, default=False, help="Run distribute, default is false.") | ||||
| parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.") | parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.") | ||||
| parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.") | parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.") | ||||
| parser.add_argument("--mode", type=str, default="sink", help="Run sink mode or non-sink mode, default is sink") | |||||
| parser.add_argument("--mode", type=str, default="sink", help="Run sink mode or not, default is sink") | |||||
| parser.add_argument("--epoch_size", type=int, default=10, help="Epoch size, default is 10") | parser.add_argument("--epoch_size", type=int, default=10, help="Epoch size, default is 10") | ||||
| parser.add_argument("--batch_size", type=int, default=32, help="Batch size, default is 32.") | parser.add_argument("--batch_size", type=int, default=32, help="Batch size, default is 32.") | ||||
| parser.add_argument("--checkpoint_path", type=str, default="", help="Checkpoint file path") | parser.add_argument("--checkpoint_path", type=str, default="", help="Checkpoint file path") | ||||
| @@ -453,7 +453,7 @@ void ProcessGeArg(const std::map<std::string, ExecutorInfoPtr>& info, const py:: | |||||
| } | } | ||||
| // process the first args of tensor | // process the first args of tensor | ||||
| // only in Dataset non-sink Mode, fp_bp graph need input tensors | |||||
| // only in dataset normal(non-sink) mode, fp_bp graph need input tensors | |||||
| if (ConfigManager::GetInstance().dataset_mode() == DS_NORMAL_MODE) { | if (ConfigManager::GetInstance().dataset_mode() == DS_NORMAL_MODE) { | ||||
| for (std::size_t i = 0; i < size; i++) { | for (std::size_t i = 0; i < size; i++) { | ||||
| ValuePtr converted = nullptr; | ValuePtr converted = nullptr; | ||||
| @@ -447,7 +447,7 @@ void DfGraphConvertor::InitLoopVar(std::vector<ge::Operator> *init_input) { | |||||
| if (ConfigManager::GetInstance().dataset_mode() == DS_SINK_MODE) { | if (ConfigManager::GetInstance().dataset_mode() == DS_SINK_MODE) { | ||||
| value = ConfigManager::GetInstance().iter_num(); | value = ConfigManager::GetInstance().iter_num(); | ||||
| } else { | } else { | ||||
| MS_LOG(INFO) << "Run with non-sink mode, the iterator number will always be 1"; | |||||
| MS_LOG(INFO) << "Run with normal(non-sink) mode, the iterator number will always be 1"; | |||||
| value = 1; | value = 1; | ||||
| ConfigManager::GetInstance().set_iter_num(value); | ConfigManager::GetInstance().set_iter_num(value); | ||||
| } | } | ||||
| @@ -51,7 +51,7 @@ class DynamicLossScaleUpdateCell(Cell): | |||||
| In every training step, the loss scaling value will be updated by loss scaling value/`scale_factor` | In every training step, the loss scaling value will be updated by loss scaling value/`scale_factor` | ||||
| when there is overflow. And it will be increased by loss scaling value * `scale_factor` if there is no | when there is overflow. And it will be increased by loss scaling value * `scale_factor` if there is no | ||||
| overflow for a continuous `scale_window` steps. This cell is used for Graph mode training in which all | overflow for a continuous `scale_window` steps. This cell is used for Graph mode training in which all | ||||
| logic will be executed on device side(Another training mode is non-sink mode in which some logic will be | |||||
| logic will be executed on device side(Another training mode is normal(non-sink) mode in which some logic will be | |||||
| executed on host). | executed on host). | ||||
| Args: | Args: | ||||
| @@ -112,8 +112,8 @@ def test_save_checkpoint(): | |||||
| os.remove('./test_files/test_ckpt-model.pkl') | os.remove('./test_files/test_ckpt-model.pkl') | ||||
| def test_loss_monitor_sink_model(): | |||||
| """Test loss monitor sink model.""" | |||||
| def test_loss_monitor_sink_mode(): | |||||
| """Test loss monitor sink mode.""" | |||||
| cb_params = _InternalCallbackParam() | cb_params = _InternalCallbackParam() | ||||
| cb_params.cur_epoch_num = 4 | cb_params.cur_epoch_num = 4 | ||||
| cb_params.cur_step_num = 2 | cb_params.cur_step_num = 2 | ||||
| @@ -131,8 +131,8 @@ def test_loss_monitor_sink_model(): | |||||
| callbacklist.end(run_context) | callbacklist.end(run_context) | ||||
| def test_loss_monitor_feed_model(): | |||||
| """Test loss monitor non-sink mode.""" | |||||
| def test_loss_monitor_normal_mode(): | |||||
| """Test loss monitor normal(non-sink) mode.""" | |||||
| cb_params = _InternalCallbackParam() | cb_params = _InternalCallbackParam() | ||||
| run_context = RunContext(cb_params) | run_context = RunContext(cb_params) | ||||
| loss_cb = LossMonitor(1) | loss_cb = LossMonitor(1) | ||||