| @@ -389,10 +389,46 @@ overall performance | |||
| ### Convert | |||
| If you want to infer the network on Ascend 310, you should convert the model to AIR: | |||
| If you want to infer the network on Ascend 310, you should convert the model to MINDIR: | |||
| ```python | |||
| python src/export.py --pretrained=[PRETRAINED_BACKBONE] --batch_size=[BATCH_SIZE] | |||
| python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT] | |||
| ``` | |||
| The ckpt_file parameter is required, | |||
| `EXPORT_FORMAT` should be in ["AIR", "ONNX", "MINDIR"] | |||
| ## [Inference Process](#contents) | |||
| ### Usage | |||
| Before performing inference, the mindir file must be exported by export script on the 910 environment. | |||
| Current batch_Size can only be set to 1. The precision calculation process needs about 70G+ memory space. | |||
| ```shell | |||
| # Ascend310 inference | |||
| sh run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID] [ANN_FILE] | |||
| ``` | |||
| `DEVICE_ID` is optional, default value is 0. | |||
| ### result | |||
| Inference result is saved in current path, you can find result like this in acc.log file. | |||
| ```text | |||
| =============coco eval reulst========= | |||
| Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.438 | |||
| Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.630 | |||
| Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.475 | |||
| Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.272 | |||
| Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.481 | |||
| Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.567 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.330 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.542 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.588 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.410 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.636 | |||
| Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.716 | |||
| ``` | |||
| # [Model Description](#contents) | |||
| @@ -437,7 +473,7 @@ YOLOv4 on 20K images(The annotation and data format must be the same as coco tes | |||
| # [Description of Random Situation](#contents) | |||
| In dataset.py, we set the seed inside ```create_dataset``` function. | |||
| In var_init.py, we set seed for weight initilization | |||
| In var_init.py, we set seed for weight initialization | |||
| # [ModelZoo Homepage](#contents) | |||
| @@ -0,0 +1,32 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_INFERENCE_UTILS_H_ | |||
| #define MINDSPORE_INFERENCE_UTILS_H_ | |||
| #include <sys/stat.h> | |||
| #include <dirent.h> | |||
| #include <vector> | |||
| #include <string> | |||
| #include <memory> | |||
| #include "include/api/types.h" | |||
| std::vector<std::string> GetAllFiles(std::string_view dirName); | |||
| DIR *OpenDir(std::string_view dirName); | |||
| std::string RealPath(std::string_view path); | |||
| std::shared_ptr<mindspore::api::Tensor> ReadFileToTensor(const std::string &file); | |||
| int WriteResult(const std::string& imageFile, const std::vector<mindspore::api::Buffer> &outputs); | |||
| #endif | |||
| @@ -0,0 +1,14 @@ | |||
| cmake_minimum_required(VERSION 3.14.1) | |||
| project(MindSporeCxxTestcase[CXX]) | |||
| add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0) | |||
| set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined") | |||
| set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/) | |||
| option(MINDSPORE_PATH "mindspore install path" "") | |||
| include_directories(${MINDSPORE_PATH}) | |||
| include_directories(${MINDSPORE_PATH}/include) | |||
| include_directories(${PROJECT_SRC_ROOT}/../inc) | |||
| find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib) | |||
| file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*) | |||
| add_executable(main main.cc utils.cc) | |||
| target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags) | |||
| @@ -0,0 +1,18 @@ | |||
| #!/bin/bash | |||
| # Copyright 2021 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| cmake . -DMINDSPORE_PATH="`pip3.7 show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`" | |||
| make | |||
| @@ -0,0 +1,144 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <sys/time.h> | |||
| #include <gflags/gflags.h> | |||
| #include <dirent.h> | |||
| #include <iostream> | |||
| #include <string> | |||
| #include <algorithm> | |||
| #include <iosfwd> | |||
| #include <vector> | |||
| #include <fstream> | |||
| #include "include/api/model.h" | |||
| #include "include/api/serialization.h" | |||
| #include "include/api/context.h" | |||
| #include "minddata/dataset/include/minddata_eager.h" | |||
| #include "../inc/utils.h" | |||
| #include "include/api/types.h" | |||
| #include "minddata/dataset/include/vision.h" | |||
| using mindspore::api::Context; | |||
| using mindspore::api::Serialization; | |||
| using mindspore::api::Model; | |||
| using mindspore::api::kModelOptionInsertOpCfgPath; | |||
| using mindspore::api::kModelOptionPrecisionMode; | |||
| using mindspore::api::kModelOptionOpSelectImplMode; | |||
| using mindspore::api::Status; | |||
| using mindspore::api::MindDataEager; | |||
| using mindspore::api::Buffer; | |||
| using mindspore::api::ModelType; | |||
| using mindspore::api::GraphCell; | |||
| using mindspore::api::SUCCESS; | |||
| using mindspore::dataset::vision::DvppDecodeResizeJpeg; | |||
| DEFINE_string(mindir_path, "", "mindir path"); | |||
| DEFINE_string(dataset_path, ".", "dataset path"); | |||
| DEFINE_int32(device_id, 0, "device id"); | |||
| DEFINE_string(precision_mode, "allow_fp32_to_fp16", "precision mode"); | |||
| DEFINE_string(op_select_impl_mode, "", "op select impl mode"); | |||
| DEFINE_string(input_shape, "img_data:1, 3, 768, 1280; img_info:1, 4", "input shape"); | |||
| DEFINE_string(input_format, "nchw", "input format"); | |||
| DEFINE_string(aipp_path, "./aipp.cfg", "aipp path"); | |||
| int main(int argc, char **argv) { | |||
| gflags::ParseCommandLineFlags(&argc, &argv, true); | |||
| if (RealPath(FLAGS_mindir_path).empty()) { | |||
| std::cout << "Invalid mindir" << std::endl; | |||
| return 1; | |||
| } | |||
| if (RealPath(FLAGS_aipp_path).empty()) { | |||
| std::cout << "Invalid aipp path" << std::endl; | |||
| return 1; | |||
| } | |||
| Context::Instance().SetDeviceTarget("Ascend310").SetDeviceID(FLAGS_device_id); | |||
| auto graph = Serialization::LoadModel(FLAGS_mindir_path, ModelType::kMindIR); | |||
| Model model((GraphCell(graph))); | |||
| std::map<std::string, std::string> build_options; | |||
| if (!FLAGS_precision_mode.empty()) { | |||
| build_options.emplace(kModelOptionPrecisionMode, FLAGS_precision_mode); | |||
| } | |||
| if (!FLAGS_op_select_impl_mode.empty()) { | |||
| build_options.emplace(kModelOptionOpSelectImplMode, FLAGS_op_select_impl_mode); | |||
| } | |||
| if (!FLAGS_aipp_path.empty()) { | |||
| build_options.emplace(kModelOptionInsertOpCfgPath, FLAGS_aipp_path); | |||
| } | |||
| Status ret = model.Build(build_options); | |||
| if (ret != SUCCESS) { | |||
| std::cout << "EEEEEEEERROR Build failed." << std::endl; | |||
| return 1; | |||
| } | |||
| auto all_files = GetAllFiles(FLAGS_dataset_path); | |||
| if (all_files.empty()) { | |||
| std::cout << "ERROR: no input data." << std::endl; | |||
| return 1; | |||
| } | |||
| std::map<double, double> costTime_map; | |||
| size_t size = all_files.size(); | |||
| MindDataEager SingleOp({DvppDecodeResizeJpeg({608, 608})}); | |||
| for (size_t i = 0; i < size; ++i) { | |||
| struct timeval start = {0}; | |||
| struct timeval end = {0}; | |||
| double startTime_ms; | |||
| double endTime_ms; | |||
| std::vector<Buffer> inputs; | |||
| std::vector<Buffer> outputs; | |||
| std::cout << "Start predict input files:" << all_files[i] << std::endl; | |||
| auto imgDvpp = SingleOp(ReadFileToTensor(all_files[i])); | |||
| std::vector<float> input_shape = {608, 608}; | |||
| inputs.clear(); | |||
| inputs.emplace_back(imgDvpp->Data(), imgDvpp->DataSize()); | |||
| inputs.emplace_back(input_shape.data(), input_shape.size() * sizeof(float)); | |||
| gettimeofday(&start, NULL); | |||
| ret = model.Predict(inputs, &outputs); | |||
| gettimeofday(&end, NULL); | |||
| if (ret != SUCCESS) { | |||
| std::cout << "Predict " << all_files[i] << " failed." << std::endl; | |||
| return 1; | |||
| } | |||
| startTime_ms = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000; | |||
| endTime_ms = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000; | |||
| costTime_map.insert(std::pair<double, double>(startTime_ms, endTime_ms)); | |||
| WriteResult(all_files[i], outputs); | |||
| } | |||
| double average = 0.0; | |||
| int infer_cnt = 0; | |||
| char tmpCh[256] = {0}; | |||
| for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) { | |||
| double diff = 0.0; | |||
| diff = iter->second - iter->first; | |||
| average += diff; | |||
| infer_cnt++; | |||
| } | |||
| average = average/infer_cnt; | |||
| snprintf(tmpCh, sizeof(tmpCh), "NN inference cost average time: %4.3f ms of infer_count %d \n", average, infer_cnt); | |||
| std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << infer_cnt << std::endl; | |||
| std::string file_name = "./time_Result" + std::string("/test_perform_static.txt"); | |||
| std::ofstream file_stream(file_name.c_str(), std::ios::trunc); | |||
| file_stream << tmpCh; | |||
| file_stream.close(); | |||
| costTime_map.clear(); | |||
| return 0; | |||
| } | |||
| @@ -0,0 +1,145 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "../inc/utils.h" | |||
| #include <fstream> | |||
| #include <algorithm> | |||
| #include <iostream> | |||
| using mindspore::api::Tensor; | |||
| using mindspore::api::Buffer; | |||
| using mindspore::api::DataType; | |||
| std::vector<std::string> GetAllFiles(std::string_view dirName) { | |||
| struct dirent *filename; | |||
| DIR *dir = OpenDir(dirName); | |||
| if (dir == nullptr) { | |||
| return {}; | |||
| } | |||
| std::vector<std::string> res; | |||
| while ((filename = readdir(dir)) != nullptr) { | |||
| std::string dName = std::string(filename->d_name); | |||
| if (dName == "." || | |||
| dName == ".." || | |||
| filename->d_type != DT_REG) | |||
| continue; | |||
| res.emplace_back(std::string(dirName) + "/" + filename->d_name); | |||
| } | |||
| std::sort(res.begin(), res.end()); | |||
| for (auto &f : res) { | |||
| std::cout << "image file: " << f << std::endl; | |||
| } | |||
| return res; | |||
| } | |||
| int WriteResult(const std::string& imageFile, const std::vector<Buffer> &outputs) { | |||
| std::string homePath = "./result_Files"; | |||
| for (size_t i = 0; i < outputs.size(); ++i) { | |||
| size_t outputSize; | |||
| const void * netOutput; | |||
| netOutput = outputs[i].Data(); | |||
| outputSize = outputs[i].DataSize(); | |||
| int pos = imageFile.rfind('/'); | |||
| std::string fileName(imageFile, pos + 1); | |||
| fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), '_' + std::to_string(i) + ".bin"); | |||
| std::string outFileName = homePath + "/" + fileName; | |||
| FILE * outputFile = fopen(outFileName.c_str(), "wb"); | |||
| fwrite(netOutput, outputSize, sizeof(char), outputFile); | |||
| fclose(outputFile); | |||
| outputFile = nullptr; | |||
| } | |||
| return 0; | |||
| } | |||
| std::shared_ptr<Tensor> ReadFileToTensor(const std::string &file) { | |||
| auto buffer = std::make_shared<Tensor>(); | |||
| if (file.empty()) { | |||
| std::cout << "Pointer file is nullptr" << std::endl; | |||
| return buffer; | |||
| } | |||
| std::ifstream ifs(file); | |||
| if (!ifs.good()) { | |||
| std::cout << "File: " << file << " is not exist" << std::endl; | |||
| return buffer; | |||
| } | |||
| if (!ifs.is_open()) { | |||
| std::cout << "File: " << file << "open failed" << std::endl; | |||
| return buffer; | |||
| } | |||
| ifs.seekg(0, std::ios::end); | |||
| size_t size = ifs.tellg(); | |||
| buffer->ResizeData(size); | |||
| if (buffer->DataSize() != size) { | |||
| std::cout << "Malloc buf failed, file: " << file << std::endl; | |||
| ifs.close(); | |||
| return buffer; | |||
| } | |||
| ifs.seekg(0, std::ios::beg); | |||
| ifs.read(reinterpret_cast<char *>(buffer->MutableData()), size); | |||
| ifs.close(); | |||
| buffer->SetDataType(DataType::kMsUint8); | |||
| buffer->SetShape({static_cast<int64_t>(size)}); | |||
| return buffer; | |||
| } | |||
| DIR *OpenDir(std::string_view dirName) { | |||
| if (dirName.empty()) { | |||
| std::cout << " dirName is null ! " << std::endl; | |||
| return nullptr; | |||
| } | |||
| std::string realPath = RealPath(dirName); | |||
| struct stat s; | |||
| lstat(realPath.c_str(), &s); | |||
| if (!S_ISDIR(s.st_mode)) { | |||
| std::cout << "dirName is not a valid directory !" << std::endl; | |||
| return nullptr; | |||
| } | |||
| DIR *dir; | |||
| dir = opendir(realPath.c_str()); | |||
| if (dir == nullptr) { | |||
| std::cout << "Can not open dir " << dirName << std::endl; | |||
| return nullptr; | |||
| } | |||
| std::cout << "Successfully opened the dir " << dirName << std::endl; | |||
| return dir; | |||
| } | |||
| std::string RealPath(std::string_view path) { | |||
| char real_path_mem[PATH_MAX] = {0}; | |||
| char *real_path_ret = nullptr; | |||
| real_path_ret = realpath(path.data(), real_path_mem); | |||
| if (real_path_ret == nullptr) { | |||
| std::cout << "File: " << path << " is not exist."; | |||
| return ""; | |||
| } | |||
| std::string real_path(real_path_mem); | |||
| std::cout << path << " realpath is: " << real_path << std::endl; | |||
| return real_path; | |||
| } | |||
| @@ -0,0 +1,98 @@ | |||
| # Copyright 2021 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """YoloV4 310 infer.""" | |||
| import os | |||
| import argparse | |||
| import datetime | |||
| import time | |||
| import numpy as np | |||
| from pycocotools.coco import COCO | |||
| from src.logger import get_logger | |||
| from eval import DetectionEngine | |||
| parser = argparse.ArgumentParser('mindspore coco testing') | |||
| # dataset related | |||
| parser.add_argument('--per_batch_size', default=1, type=int, help='batch size for per gpu') | |||
| # logging related | |||
| parser.add_argument('--log_path', type=str, default='outputs/', help='checkpoint save location') | |||
| # detect_related | |||
| parser.add_argument('--nms_thresh', type=float, default=0.5, help='threshold for NMS') | |||
| parser.add_argument('--ann_file', type=str, default='', help='path to annotation') | |||
| parser.add_argument('--ignore_threshold', type=float, default=0.001, help='threshold to throw low quality boxes') | |||
| parser.add_argument('--img_id_file_path', type=str, default='', help='path of image dataset') | |||
| parser.add_argument('--result_files', type=str, default='./result_Files', help='path to 310 infer result floder') | |||
| args, _ = parser.parse_known_args() | |||
| class Redirct: | |||
| def __init__(self): | |||
| self.content = "" | |||
| def write(self, content): | |||
| self.content += content | |||
| def flush(self): | |||
| self.content = "" | |||
| if __name__ == "__main__": | |||
| start_time = time.time() | |||
| args.outputs_dir = os.path.join(args.log_path, | |||
| datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S')) | |||
| args.logger = get_logger(args.outputs_dir, 0) | |||
| # init detection engine | |||
| detection = DetectionEngine(args) | |||
| coco = COCO(args.ann_file) | |||
| result_path = args.result_files | |||
| files = os.listdir(args.img_id_file_path) | |||
| for file in files: | |||
| img_ids_name = file.split('.')[0] | |||
| img_id = int(np.squeeze(img_ids_name)) | |||
| imgIds = coco.getImgIds(imgIds=[img_id]) | |||
| img = coco.loadImgs(imgIds[np.random.randint(0, len(imgIds))])[0] | |||
| image_shape = ((img['width'], img['height']),) | |||
| img_id = (np.squeeze(img_ids_name),) | |||
| result_path_0 = os.path.join(result_path, img_ids_name + "_0.bin") | |||
| result_path_1 = os.path.join(result_path, img_ids_name + "_1.bin") | |||
| result_path_2 = os.path.join(result_path, img_ids_name + "_2.bin") | |||
| output_small = np.fromfile(result_path_0, dtype=np.float32).reshape(1, 19, 19, 3, 85) | |||
| output_me = np.fromfile(result_path_1, dtype=np.float32).reshape(1, 38, 38, 3, 85) | |||
| output_big = np.fromfile(result_path_2, dtype=np.float32).reshape(1, 76, 76, 3, 85) | |||
| detection.detect([output_small, output_me, output_big], args.per_batch_size, image_shape, img_id) | |||
| args.logger.info('Calculating mAP...') | |||
| detection.do_nms_for_results() | |||
| result_file_path = detection.write_result() | |||
| args.logger.info('result file path: {}'.format(result_file_path)) | |||
| eval_result = detection.get_eval_result() | |||
| cost_time = time.time() - start_time | |||
| args.logger.info('\n=============coco eval reulst=========\n' + eval_result) | |||
| args.logger.info('testing cost time {:.2f}h'.format(cost_time / 3600.)) | |||
| @@ -0,0 +1,103 @@ | |||
| #!/bin/bash | |||
| # Copyright 2021 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| if [[ $# -lt 3 || $# -gt 4 ]]; then | |||
| echo "Usage: sh run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID] [ANN_FILE] | |||
| DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero" | |||
| exit 1 | |||
| fi | |||
| get_real_path(){ | |||
| if [ "${1:0:1}" == "/" ]; then | |||
| echo "$1" | |||
| else | |||
| echo "$(realpath -m $PWD/$1)" | |||
| fi | |||
| } | |||
| model=$(get_real_path $1) | |||
| data_path=$(get_real_path $2) | |||
| if [ $# == 4 ]; then | |||
| device_id=$3 | |||
| if [ -z $device_id ]; then | |||
| device_id=0 | |||
| else | |||
| device_id=$device_id | |||
| fi | |||
| fi | |||
| annotation_file=$(get_real_path $4) | |||
| echo "mindir name: "$model | |||
| echo "dataset path: "$data_path | |||
| echo "device id: "$device_id | |||
| echo "annotation file: "$annotation_file | |||
| export ASCEND_HOME=/usr/local/Ascend/ | |||
| if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then | |||
| export PATH=$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH | |||
| export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH | |||
| export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe | |||
| export PYTHONPATH=${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH | |||
| export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp | |||
| else | |||
| export PATH=$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH | |||
| export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH | |||
| export PYTHONPATH=$ASCEND_HOME/atc/python/site-packages/te.egg:$ASCEND_HOME/atc/python/site-packages/topi.egg:$ASCEND_HOME/atc/python/site-packages/auto_tune.egg::$ASCEND_HOME/atc/python/site-packages/schedule_search.egg:$PYTHONPATH | |||
| export ASCEND_OPP_PATH=$ASCEND_HOME/opp | |||
| fi | |||
| function compile_app() | |||
| { | |||
| cd ../ascend310_infer/src | |||
| if [ -f "Makefile" ]; then | |||
| make clean | |||
| fi | |||
| sh build.sh &> build.log | |||
| } | |||
| function infer() | |||
| { | |||
| cd - | |||
| if [ -d result_Files ]; then | |||
| rm -rf ./result_Files | |||
| fi | |||
| if [ -d time_Result ]; then | |||
| rm -rf ./time_Result | |||
| fi | |||
| mkdir result_Files | |||
| mkdir time_Result | |||
| ../ascend310_infer/src/main --mindir_path=$model --dataset_path=$data_path --device_id=$device_id --aipp_path ../src/aipp.cfg &> infer.log | |||
| } | |||
| function cal_acc() | |||
| { | |||
| python3.7 ../postprocess.py --ann_file=$annotation_file --img_id_file_path=$data_path --result_files=./result_Files &> acc.log & | |||
| } | |||
| compile_app | |||
| if [ $? -ne 0 ]; then | |||
| echo "compile app code failed" | |||
| exit 1 | |||
| fi | |||
| infer | |||
| if [ $? -ne 0 ]; then | |||
| echo "execute inference failed" | |||
| exit 1 | |||
| fi | |||
| cal_acc | |||
| if [ $? -ne 0 ]; then | |||
| echo "calculate accuracy failed" | |||
| exit 1 | |||
| fi | |||
| @@ -0,0 +1,26 @@ | |||
| aipp_op { | |||
| aipp_mode : static | |||
| input_format : YUV420SP_U8 | |||
| related_input_rank : 0 | |||
| csc_switch : true | |||
| rbuv_swap_switch : false | |||
| matrix_r0c0 : 256 | |||
| matrix_r0c1 : 0 | |||
| matrix_r0c2 : 359 | |||
| matrix_r1c0 : 256 | |||
| matrix_r1c1 : -88 | |||
| matrix_r1c2 : -183 | |||
| matrix_r2c0 : 256 | |||
| matrix_r2c1 : 454 | |||
| matrix_r2c2 : 0 | |||
| input_bias_0 : 0 | |||
| input_bias_1 : 128 | |||
| input_bias_2 : 128 | |||
| mean_chn_0 : 124 | |||
| mean_chn_1 : 117 | |||
| mean_chn_2 : 104 | |||
| var_reci_chn_0 : 0.0171247538316637 | |||
| var_reci_chn_1 : 0.0175070028011204 | |||
| var_reci_chn_2 : 0.0174291938997821 | |||
| } | |||