|
|
@@ -0,0 +1,207 @@ |
|
|
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
|
|
# |
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
|
|
# You may obtain a copy of the License at |
|
|
|
|
|
# |
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
|
|
# |
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
|
|
# limitations under the License. |
|
|
|
|
|
# ============================================================================ |
|
|
|
|
|
"""train_imagenet.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
|
|
|
import math |
|
|
|
|
|
import numpy as np |
|
|
|
|
|
import pandas as pd |
|
|
|
|
|
import mindspore.dataset.engine as de |
|
|
|
|
|
import mindspore.common.dtype as mstype |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class H5Dataset(): |
|
|
|
|
|
""" |
|
|
|
|
|
H5DataSet |
|
|
|
|
|
""" |
|
|
|
|
|
input_length = 39 |
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, data_path, train_mode=True, train_num_of_parts=21, |
|
|
|
|
|
test_num_of_parts=3): |
|
|
|
|
|
self._hdf_data_dir = data_path |
|
|
|
|
|
self._is_training = train_mode |
|
|
|
|
|
|
|
|
|
|
|
if self._is_training: |
|
|
|
|
|
self._file_prefix = 'train' |
|
|
|
|
|
self._num_of_parts = train_num_of_parts |
|
|
|
|
|
else: |
|
|
|
|
|
self._file_prefix = 'test' |
|
|
|
|
|
self._num_of_parts = test_num_of_parts |
|
|
|
|
|
|
|
|
|
|
|
self.data_size = self._bin_count(self._hdf_data_dir, self._file_prefix, |
|
|
|
|
|
self._num_of_parts) |
|
|
|
|
|
print("data_size: {}".format(self.data_size)) |
|
|
|
|
|
|
|
|
|
|
|
def _bin_count(self, hdf_data_dir, file_prefix, num_of_parts): |
|
|
|
|
|
size = 0 |
|
|
|
|
|
for part in range(num_of_parts): |
|
|
|
|
|
_y = pd.read_hdf(os.path.join(hdf_data_dir, |
|
|
|
|
|
file_prefix + '_output_part_' + str( |
|
|
|
|
|
part) + '.h5')) |
|
|
|
|
|
size += _y.shape[0] |
|
|
|
|
|
return size |
|
|
|
|
|
|
|
|
|
|
|
def _iterate_hdf_files_(self, num_of_parts=None, |
|
|
|
|
|
shuffle_block=False): |
|
|
|
|
|
""" |
|
|
|
|
|
iterate among hdf files(blocks). when the whole data set is finished, the iterator restarts |
|
|
|
|
|
from the beginning, thus the data stream will never stop |
|
|
|
|
|
:param train_mode: True or false,false is eval_mode, |
|
|
|
|
|
this file iterator will go through the train set |
|
|
|
|
|
:param num_of_parts: number of files |
|
|
|
|
|
:param shuffle_block: shuffle block files at every round |
|
|
|
|
|
:return: input_hdf_file_name, output_hdf_file_name, finish_flag |
|
|
|
|
|
""" |
|
|
|
|
|
parts = np.arange(num_of_parts) |
|
|
|
|
|
while True: |
|
|
|
|
|
if shuffle_block: |
|
|
|
|
|
for _ in range(int(shuffle_block)): |
|
|
|
|
|
np.random.shuffle(parts) |
|
|
|
|
|
for i, p in enumerate(parts): |
|
|
|
|
|
yield os.path.join(self._hdf_data_dir, |
|
|
|
|
|
self._file_prefix + '_input_part_' + str( |
|
|
|
|
|
p) + '.h5'), \ |
|
|
|
|
|
os.path.join(self._hdf_data_dir, |
|
|
|
|
|
self._file_prefix + '_output_part_' + str( |
|
|
|
|
|
p) + '.h5'), i + 1 == len(parts) |
|
|
|
|
|
|
|
|
|
|
|
def _generator(self, X, y, batch_size, shuffle=True): |
|
|
|
|
|
""" |
|
|
|
|
|
should be accessed only in private |
|
|
|
|
|
:param X: |
|
|
|
|
|
:param y: |
|
|
|
|
|
:param batch_size: |
|
|
|
|
|
:param shuffle: |
|
|
|
|
|
:return: |
|
|
|
|
|
""" |
|
|
|
|
|
number_of_batches = np.ceil(1. * X.shape[0] / batch_size) |
|
|
|
|
|
counter = 0 |
|
|
|
|
|
finished = False |
|
|
|
|
|
sample_index = np.arange(X.shape[0]) |
|
|
|
|
|
if shuffle: |
|
|
|
|
|
for _ in range(int(shuffle)): |
|
|
|
|
|
np.random.shuffle(sample_index) |
|
|
|
|
|
assert X.shape[0] > 0 |
|
|
|
|
|
while True: |
|
|
|
|
|
batch_index = sample_index[ |
|
|
|
|
|
batch_size * counter: batch_size * (counter + 1)] |
|
|
|
|
|
X_batch = X[batch_index] |
|
|
|
|
|
y_batch = y[batch_index] |
|
|
|
|
|
counter += 1 |
|
|
|
|
|
yield X_batch, y_batch, finished |
|
|
|
|
|
if counter == number_of_batches: |
|
|
|
|
|
counter = 0 |
|
|
|
|
|
finished = True |
|
|
|
|
|
|
|
|
|
|
|
def batch_generator(self, batch_size=1000, |
|
|
|
|
|
random_sample=False, shuffle_block=False): |
|
|
|
|
|
""" |
|
|
|
|
|
:param train_mode: True or false,false is eval_mode, |
|
|
|
|
|
:param batch_size |
|
|
|
|
|
:param num_of_parts: number of files |
|
|
|
|
|
:param random_sample: if True, will shuffle |
|
|
|
|
|
:param shuffle_block: shuffle file blocks at every round |
|
|
|
|
|
:return: |
|
|
|
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
for hdf_in, hdf_out, _ in self._iterate_hdf_files_(self._num_of_parts, |
|
|
|
|
|
shuffle_block): |
|
|
|
|
|
start = stop = None |
|
|
|
|
|
X_all = pd.read_hdf(hdf_in, start=start, stop=stop).values |
|
|
|
|
|
y_all = pd.read_hdf(hdf_out, start=start, stop=stop).values |
|
|
|
|
|
data_gen = self._generator(X_all, y_all, batch_size, |
|
|
|
|
|
shuffle=random_sample) |
|
|
|
|
|
finished = False |
|
|
|
|
|
|
|
|
|
|
|
while not finished: |
|
|
|
|
|
X, y, finished = data_gen.__next__() |
|
|
|
|
|
X_id = X[:, 0:self.input_length] |
|
|
|
|
|
X_va = X[:, self.input_length:] |
|
|
|
|
|
yield np.array(X_id.astype(dtype=np.int32)), np.array( |
|
|
|
|
|
X_va.astype(dtype=np.float32)), np.array( |
|
|
|
|
|
y.astype(dtype=np.float32)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _get_h5_dataset(data_dir, train_mode=True, epochs=1, batch_size=1000): |
|
|
|
|
|
""" |
|
|
|
|
|
get_h5_dataset |
|
|
|
|
|
""" |
|
|
|
|
|
data_para = { |
|
|
|
|
|
'batch_size': batch_size, |
|
|
|
|
|
} |
|
|
|
|
|
if train_mode: |
|
|
|
|
|
data_para['random_sample'] = True |
|
|
|
|
|
data_para['shuffle_block'] = True |
|
|
|
|
|
|
|
|
|
|
|
h5_dataset = H5Dataset(data_path=data_dir, train_mode=train_mode) |
|
|
|
|
|
numbers_of_batch = math.ceil(h5_dataset.data_size / batch_size) |
|
|
|
|
|
|
|
|
|
|
|
def _iter_h5_data(): |
|
|
|
|
|
train_eval_gen = h5_dataset.batch_generator(**data_para) |
|
|
|
|
|
for _ in range(0, numbers_of_batch, 1): |
|
|
|
|
|
yield train_eval_gen.__next__() |
|
|
|
|
|
|
|
|
|
|
|
ds = de.GeneratorDataset(_iter_h5_data(), ["ids", "weights", "labels"]) |
|
|
|
|
|
ds.set_dataset_size(numbers_of_batch) |
|
|
|
|
|
ds = ds.repeat(epochs) |
|
|
|
|
|
return ds |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _get_tf_dataset(data_dir, train_mode=True, epochs=1, batch_size=1000, |
|
|
|
|
|
line_per_sample=1000, rank_size=None, rank_id=None): |
|
|
|
|
|
""" |
|
|
|
|
|
get_tf_dataset |
|
|
|
|
|
""" |
|
|
|
|
|
dataset_files = [] |
|
|
|
|
|
file_prefix_name = 'train' if train_mode else 'test' |
|
|
|
|
|
shuffle = train_mode |
|
|
|
|
|
for (dirpath, _, filenames) in os.walk(data_dir): |
|
|
|
|
|
for filename in filenames: |
|
|
|
|
|
if file_prefix_name in filename and "tfrecord" in filename: |
|
|
|
|
|
dataset_files.append(os.path.join(dirpath, filename)) |
|
|
|
|
|
schema = de.Schema() |
|
|
|
|
|
schema.add_column('feat_ids', de_type=mstype.int32) |
|
|
|
|
|
schema.add_column('feat_vals', de_type=mstype.float32) |
|
|
|
|
|
schema.add_column('label', de_type=mstype.float32) |
|
|
|
|
|
if rank_size is not None and rank_id is not None: |
|
|
|
|
|
ds = de.TFRecordDataset(dataset_files=dataset_files, shuffle=shuffle, schema=schema, num_parallel_workers=8, |
|
|
|
|
|
num_shards=rank_size, shard_id=rank_id, shard_equal_rows=True) |
|
|
|
|
|
else: |
|
|
|
|
|
ds = de.TFRecordDataset(dataset_files=dataset_files, shuffle=shuffle, schema=schema, num_parallel_workers=8) |
|
|
|
|
|
ds = ds.batch(int(batch_size / line_per_sample), |
|
|
|
|
|
drop_remainder=True) |
|
|
|
|
|
ds = ds.map(operations=(lambda x, y, z: ( |
|
|
|
|
|
np.array(x).flatten().reshape(batch_size, 39), |
|
|
|
|
|
np.array(y).flatten().reshape(batch_size, 39), |
|
|
|
|
|
np.array(z).flatten().reshape(batch_size, 1))), |
|
|
|
|
|
input_columns=['feat_ids', 'feat_vals', 'label'], |
|
|
|
|
|
columns_order=['feat_ids', 'feat_vals', 'label'], num_parallel_workers=8) |
|
|
|
|
|
#if train_mode: |
|
|
|
|
|
ds = ds.repeat(epochs) |
|
|
|
|
|
return ds |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def create_dataset(data_dir, train_mode=True, epochs=1, batch_size=1000, |
|
|
|
|
|
is_tf_dataset=True, line_per_sample=1000, rank_size=None, rank_id=None): |
|
|
|
|
|
""" |
|
|
|
|
|
create_dataset |
|
|
|
|
|
""" |
|
|
|
|
|
if is_tf_dataset: |
|
|
|
|
|
return _get_tf_dataset(data_dir, train_mode, epochs, batch_size, |
|
|
|
|
|
line_per_sample, rank_size=rank_size, rank_id=rank_id) |
|
|
|
|
|
if rank_size > 1: |
|
|
|
|
|
raise RuntimeError("please use tfrecord dataset.") |
|
|
|
|
|
return _get_h5_dataset(data_dir, train_mode, epochs, batch_size) |