|
|
|
@@ -105,7 +105,6 @@ def resize_nn_grayscale_integer_ratio(datatype): |
|
|
|
output = resize_nn(input_tensor) |
|
|
|
np.testing.assert_array_equal(output.asnumpy(), input_tensor.asnumpy()) |
|
|
|
|
|
|
|
|
|
|
|
def resize_nn_grayscale_not_integer_ratio(datatype): |
|
|
|
input_tensor = Tensor(np.array([[[[0.1, 0.2, 0.3, 0.4], |
|
|
|
[0.5, 0.6, 0.7, 0.8], |
|
|
|
@@ -187,12 +186,11 @@ def resize_nn_grayscale_not_integer_ratio(datatype): |
|
|
|
output = resize_nn(input_tensor) |
|
|
|
np.testing.assert_array_equal(output.asnumpy(), input_tensor.asnumpy()) |
|
|
|
|
|
|
|
|
|
|
|
def test_resize_nn_rgb_integer_ratio(): |
|
|
|
def resize_nn_rgb_integer_ratio(datatype): |
|
|
|
input_tensor = Tensor(np.array( |
|
|
|
[[[[1, 2, 3], [4, 5, 6], [7, 8, 9]], |
|
|
|
[[11, 12, 13], [14, 15, 16], [17, 18, 19]], |
|
|
|
[[111, 112, 113], [114, 115, 116], [117, 118, 119]]]]).astype(np.int32)) |
|
|
|
[[111, 112, 113], [114, 115, 116], [117, 118, 119]]]]).astype(datatype)) |
|
|
|
|
|
|
|
# larger h and w |
|
|
|
resize_nn = NetResizeNearestNeighbor((9, 9)) |
|
|
|
@@ -224,7 +222,7 @@ def test_resize_nn_rgb_integer_ratio(): |
|
|
|
[117, 117, 117, 118, 118, 118, 119, 119, 119], |
|
|
|
[117, 117, 117, 118, 118, 118, 119, 119, 119], |
|
|
|
[117, 117, 117, 118, 118, 118, 119, 119, 119]]]]) |
|
|
|
expected_output = Tensor(np.array(expected_output_array).astype(np.int32)) |
|
|
|
expected_output = Tensor(np.array(expected_output_array).astype(datatype)) |
|
|
|
|
|
|
|
np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) |
|
|
|
|
|
|
|
@@ -232,7 +230,7 @@ def test_resize_nn_rgb_integer_ratio(): |
|
|
|
resize_nn = NetResizeNearestNeighbor((1, 1)) |
|
|
|
output = resize_nn(input_tensor) |
|
|
|
expected_output = Tensor( |
|
|
|
np.array([[[[1]], [[11]], [[111]]]]).astype(np.int32)) |
|
|
|
np.array([[[[1]], [[11]], [[111]]]]).astype(datatype)) |
|
|
|
np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) |
|
|
|
|
|
|
|
# smaller h, larger w |
|
|
|
@@ -240,7 +238,7 @@ def test_resize_nn_rgb_integer_ratio(): |
|
|
|
output = resize_nn(input_tensor) |
|
|
|
expected_output = Tensor(np.array([[[[1, 1, 2, 2, 3, 3]], |
|
|
|
[[11, 11, 12, 12, 13, 13]], |
|
|
|
[[111, 111, 112, 112, 113, 113]]]]).astype(np.int32)) |
|
|
|
[[111, 111, 112, 112, 113, 113]]]]).astype(datatype)) |
|
|
|
np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) |
|
|
|
|
|
|
|
# larger h, smaller w |
|
|
|
@@ -248,7 +246,7 @@ def test_resize_nn_rgb_integer_ratio(): |
|
|
|
output = resize_nn(input_tensor) |
|
|
|
expected_output = Tensor(np.array([[[[1], [1], [4], [4], [7], [7]], |
|
|
|
[[11], [11], [14], [14], [17], [17]], |
|
|
|
[[111], [111], [114], [114], [117], [117]]]]).astype(np.int32)) |
|
|
|
[[111], [111], [114], [114], [117], [117]]]]).astype(datatype)) |
|
|
|
np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) |
|
|
|
|
|
|
|
# smaller h, same w |
|
|
|
@@ -256,7 +254,7 @@ def test_resize_nn_rgb_integer_ratio(): |
|
|
|
output = resize_nn(input_tensor) |
|
|
|
expected_output = Tensor(np.array([[[[1, 2, 3]], |
|
|
|
[[11, 12, 13]], |
|
|
|
[[111, 112, 113]]]]).astype(np.int32)) |
|
|
|
[[111, 112, 113]]]]).astype(datatype)) |
|
|
|
np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) |
|
|
|
|
|
|
|
# larger h, same w |
|
|
|
@@ -279,7 +277,7 @@ def test_resize_nn_rgb_integer_ratio(): |
|
|
|
[114, 115, 116], |
|
|
|
[114, 115, 116], |
|
|
|
[117, 118, 119], |
|
|
|
[117, 118, 119]]]]).astype(np.int32)) |
|
|
|
[117, 118, 119]]]]).astype(datatype)) |
|
|
|
np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) |
|
|
|
|
|
|
|
# same h, smaller w |
|
|
|
@@ -287,7 +285,7 @@ def test_resize_nn_rgb_integer_ratio(): |
|
|
|
output = resize_nn(input_tensor) |
|
|
|
expected_output = Tensor(np.array([[[[1], [4], [7]], |
|
|
|
[[11], [14], [17]], |
|
|
|
[[111], [114], [117]]]]).astype(np.int32)) |
|
|
|
[[111], [114], [117]]]]).astype(datatype)) |
|
|
|
np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) |
|
|
|
|
|
|
|
# same h, larger w |
|
|
|
@@ -301,7 +299,7 @@ def test_resize_nn_rgb_integer_ratio(): |
|
|
|
[17, 17, 18, 18, 19, 19]], |
|
|
|
[[111, 111, 112, 112, 113, 113], |
|
|
|
[114, 114, 115, 115, 116, 116], |
|
|
|
[117, 117, 118, 118, 119, 119]]]]).astype(np.int32)) |
|
|
|
[117, 117, 118, 118, 119, 119]]]]).astype(datatype)) |
|
|
|
np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) |
|
|
|
|
|
|
|
# same w, same h (identity) |
|
|
|
@@ -309,8 +307,7 @@ def test_resize_nn_rgb_integer_ratio(): |
|
|
|
output = resize_nn(input_tensor) |
|
|
|
np.testing.assert_array_equal(output.asnumpy(), input_tensor.asnumpy()) |
|
|
|
|
|
|
|
|
|
|
|
def test_resize_nn_rgb_not_integer_ratio(): |
|
|
|
def resize_nn_rgb_not_integer_ratio(datatype): |
|
|
|
input_tensor = Tensor(np.array([[[[1, 2, 3, 4], |
|
|
|
[5, 6, 7, 8], |
|
|
|
[9, 0, 1, 2]], |
|
|
|
@@ -319,7 +316,7 @@ def test_resize_nn_rgb_not_integer_ratio(): |
|
|
|
[19, 10, 11, 12]], |
|
|
|
[[111, 112, 113, 114], |
|
|
|
[115, 116, 117, 118], |
|
|
|
[119, 110, 111, 112]]]]).astype(np.int32)) |
|
|
|
[119, 110, 111, 112]]]]).astype(datatype)) |
|
|
|
|
|
|
|
# larger h and w |
|
|
|
resize_nn = NetResizeNearestNeighbor((7, 7)) |
|
|
|
@@ -344,14 +341,14 @@ def test_resize_nn_rgb_not_integer_ratio(): |
|
|
|
[115, 115, 116, 116, 117, 117, 118], |
|
|
|
[115, 115, 116, 116, 117, 117, 118], |
|
|
|
[119, 119, 110, 110, 111, 111, 112], |
|
|
|
[119, 119, 110, 110, 111, 111, 112]]]]).astype(np.int32)) |
|
|
|
[119, 119, 110, 110, 111, 111, 112]]]]).astype(datatype)) |
|
|
|
|
|
|
|
# smaller h and w |
|
|
|
resize_nn = NetResizeNearestNeighbor((2, 3)) |
|
|
|
output = resize_nn(input_tensor) |
|
|
|
expected_output = Tensor(np.array([[[[1, 2, 3], [5, 6, 7]], |
|
|
|
[[11, 12, 13], [15, 16, 17]], |
|
|
|
[[111, 112, 113], [115, 116, 117]]]]).astype(np.int32)) |
|
|
|
[[111, 112, 113], [115, 116, 117]]]]).astype(datatype)) |
|
|
|
np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) |
|
|
|
|
|
|
|
# smaller h, larger w |
|
|
|
@@ -362,7 +359,7 @@ def test_resize_nn_rgb_not_integer_ratio(): |
|
|
|
[[11, 11, 12, 12, 13, 13, 14], |
|
|
|
[15, 15, 16, 16, 17, 17, 18]], |
|
|
|
[[111, 111, 112, 112, 113, 113, 114], |
|
|
|
[115, 115, 116, 116, 117, 117, 118]]]]).astype(np.int32)) |
|
|
|
[115, 115, 116, 116, 117, 117, 118]]]]).astype(datatype)) |
|
|
|
np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) |
|
|
|
|
|
|
|
# larger h, smaller w |
|
|
|
@@ -382,7 +379,7 @@ def test_resize_nn_rgb_not_integer_ratio(): |
|
|
|
[111, 112, 113], |
|
|
|
[115, 116, 117], |
|
|
|
[115, 116, 117], |
|
|
|
[119, 110, 111]]]]).astype(np.int32)) |
|
|
|
[119, 110, 111]]]]).astype(datatype)) |
|
|
|
np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) |
|
|
|
|
|
|
|
# smaller h, same w |
|
|
|
@@ -393,7 +390,7 @@ def test_resize_nn_rgb_not_integer_ratio(): |
|
|
|
[[11, 12, 13, 14], |
|
|
|
[15, 16, 17, 18]], |
|
|
|
[[111, 112, 113, 114], |
|
|
|
[115, 116, 117, 118]]]]).astype(np.int32)) |
|
|
|
[115, 116, 117, 118]]]]).astype(datatype)) |
|
|
|
np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) |
|
|
|
|
|
|
|
# larger h, same w |
|
|
|
@@ -422,7 +419,7 @@ def test_resize_nn_rgb_not_integer_ratio(): |
|
|
|
[115, 116, 117, 118], |
|
|
|
[115, 116, 117, 118], |
|
|
|
[119, 110, 111, 112], |
|
|
|
[119, 110, 111, 112]]]]).astype(np.int32)) |
|
|
|
[119, 110, 111, 112]]]]).astype(datatype)) |
|
|
|
np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) |
|
|
|
|
|
|
|
# same h, smaller w |
|
|
|
@@ -430,7 +427,7 @@ def test_resize_nn_rgb_not_integer_ratio(): |
|
|
|
output = resize_nn(input_tensor) |
|
|
|
expected_output = Tensor(np.array([[[[1, 3], [5, 7], [9, 1]], |
|
|
|
[[11, 13], [15, 17], [19, 11]], |
|
|
|
[[111, 113], [115, 117], [119, 111]]]]).astype(np.int32)) |
|
|
|
[[111, 113], [115, 117], [119, 111]]]]).astype(datatype)) |
|
|
|
np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) |
|
|
|
|
|
|
|
# same h, larger w |
|
|
|
@@ -444,7 +441,7 @@ def test_resize_nn_rgb_not_integer_ratio(): |
|
|
|
[19, 19, 10, 11, 11, 12]], |
|
|
|
[[111, 111, 112, 113, 113, 114], |
|
|
|
[115, 115, 116, 117, 117, 118], |
|
|
|
[119, 119, 110, 111, 111, 112]]]]).astype(np.int32)) |
|
|
|
[119, 119, 110, 111, 111, 112]]]]).astype(datatype)) |
|
|
|
np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) |
|
|
|
|
|
|
|
# same w, same h (identity) |
|
|
|
@@ -452,47 +449,7 @@ def test_resize_nn_rgb_not_integer_ratio(): |
|
|
|
output = resize_nn(input_tensor) |
|
|
|
np.testing.assert_array_equal(output.asnumpy(), input_tensor.asnumpy()) |
|
|
|
|
|
|
|
|
|
|
|
def resize_nn_grayscale_multiple_images(datatype): |
|
|
|
input_tensor = Tensor(np.array([[[[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]]], |
|
|
|
[[[0.4, 0.5, 0.6], [0.7, 0.8, 0.9], [0.1, 0.2, 0.3]]], |
|
|
|
[[[0.7, 0.8, 0.9], [0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]]]).astype(datatype)) |
|
|
|
|
|
|
|
resize_nn = NetResizeNearestNeighbor((2, 6)) |
|
|
|
output = resize_nn(input_tensor) |
|
|
|
|
|
|
|
expected_output = Tensor(np.array([[[[0.1, 0.1, 0.2, 0.2, 0.3, 0.3], |
|
|
|
[0.4, 0.4, 0.5, 0.5, 0.6, 0.6]]], |
|
|
|
[[[0.4, 0.4, 0.5, 0.5, 0.6, 0.6], |
|
|
|
[0.7, 0.7, 0.8, 0.8, 0.9, 0.9]]], |
|
|
|
[[[0.7, 0.7, 0.8, 0.8, 0.9, 0.9], |
|
|
|
[0.1, 0.1, 0.2, 0.2, 0.3, 0.3]]]]).astype(datatype)) |
|
|
|
|
|
|
|
np.testing.assert_array_equal(output.asnumpy(), expected_output.asnumpy()) |
|
|
|
|
|
|
|
|
|
|
|
def resize_nn_grayscale_align_corners(datatype): |
|
|
|
input_tensor = Tensor( |
|
|
|
np.array([[[[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]]]]).astype(datatype)) |
|
|
|
|
|
|
|
resize_nn_corners_aligned = NetResizeNearestNeighbor( |
|
|
|
(3, 7), align_corners=True) |
|
|
|
output_corners_aligned = resize_nn_corners_aligned(input_tensor) |
|
|
|
|
|
|
|
resize_nn = NetResizeNearestNeighbor((3, 7)) |
|
|
|
output = resize_nn(input_tensor) |
|
|
|
|
|
|
|
expected_output = Tensor(np.array([[[[0.1, 0.2, 0.2, 0.3, 0.3, 0.4, 0.4], |
|
|
|
[0.5, 0.6, 0.6, 0.7, 0.7, 0.8, 0.8], |
|
|
|
[0.5, 0.6, 0.6, 0.7, 0.7, 0.8, 0.8]]]]).astype(datatype)) |
|
|
|
|
|
|
|
np.testing.assert_array_equal( |
|
|
|
output_corners_aligned.asnumpy(), expected_output.asnumpy()) |
|
|
|
np.testing.assert_raises(AssertionError, np.testing.assert_array_equal, |
|
|
|
output.asnumpy(), expected_output.asnumpy()) |
|
|
|
|
|
|
|
|
|
|
|
def test_resize_nn_rgb_multiple(): |
|
|
|
def resize_nn_rgb_multiple(datatype): |
|
|
|
input_tensor = Tensor(np.array([[[[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]], |
|
|
|
[[11, 12, 13, 14, 15], [16, 17, 18, 19, 20]], |
|
|
|
[[111, 112, 113, 114, 115], [116, 117, 118, 119, 120]]], |
|
|
|
@@ -501,7 +458,7 @@ def test_resize_nn_rgb_multiple(): |
|
|
|
[[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]], |
|
|
|
[[[111, 112, 113, 114, 115], [116, 117, 118, 119, 120]], |
|
|
|
[[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]], |
|
|
|
[[11, 12, 13, 14, 15], [16, 17, 18, 19, 20]]]]).astype(np.int32)) |
|
|
|
[[11, 12, 13, 14, 15], [16, 17, 18, 19, 20]]]]).astype(datatype)) |
|
|
|
|
|
|
|
resize_nn = NetResizeNearestNeighbor((5, 2)) |
|
|
|
output = resize_nn(input_tensor) |
|
|
|
@@ -514,15 +471,14 @@ def test_resize_nn_rgb_multiple(): |
|
|
|
[[1, 3], [1, 3], [1, 3], [6, 8], [6, 8]]], |
|
|
|
[[[111, 113], [111, 113], [111, 113], [116, 118], [116, 118]], |
|
|
|
[[1, 3], [1, 3], [1, 3], [6, 8], [6, 8]], |
|
|
|
[[11, 13], [11, 13], [11, 13], [16, 18], [16, 18]]]]).astype(np.int32)) |
|
|
|
[[11, 13], [11, 13], [11, 13], [16, 18], [16, 18]]]]).astype(datatype)) |
|
|
|
|
|
|
|
np.testing.assert_array_equal(output.asnumpy(), expected_output.asnumpy()) |
|
|
|
|
|
|
|
|
|
|
|
def test_resize_nn_rgb_align_corners(): |
|
|
|
def resize_nn_rgb_align_corners(datatype): |
|
|
|
input_tensor = Tensor(np.array([[[[1, 2, 3, 4], [5, 6, 7, 8]], |
|
|
|
[[11, 12, 13, 14], [15, 16, 17, 18]], |
|
|
|
[[21, 22, 23, 24], [25, 26, 27, 28]]]]).astype(np.int32)) |
|
|
|
[[21, 22, 23, 24], [25, 26, 27, 28]]]]).astype(datatype)) |
|
|
|
|
|
|
|
resize_nn_corners_aligned = NetResizeNearestNeighbor( |
|
|
|
(5, 2), align_corners=True) |
|
|
|
@@ -534,56 +490,128 @@ def test_resize_nn_rgb_align_corners(): |
|
|
|
expected_output = Tensor(np.array([[[[1, 4], [1, 4], [5, 8], [5, 8], [5, 8]], |
|
|
|
[[11, 14], [11, 14], [15, 18], |
|
|
|
[15, 18], [15, 18]], |
|
|
|
[[21, 24], [21, 24], [25, 28], [25, 28], [25, 28]]]]).astype(np.int32)) |
|
|
|
[[21, 24], [21, 24], [25, 28], [25, 28], [25, 28]]]]).astype(datatype)) |
|
|
|
|
|
|
|
np.testing.assert_array_equal( |
|
|
|
output_corners_aligned.asnumpy(), expected_output.asnumpy()) |
|
|
|
np.testing.assert_raises(AssertionError, np.testing.assert_array_equal, |
|
|
|
output.asnumpy(), expected_output.asnumpy()) |
|
|
|
|
|
|
|
def resize_nn_grayscale_multiple_images(datatype): |
|
|
|
input_tensor = Tensor(np.array([[[[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]]], |
|
|
|
[[[0.4, 0.5, 0.6], [0.7, 0.8, 0.9], [0.1, 0.2, 0.3]]], |
|
|
|
[[[0.7, 0.8, 0.9], [0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]]]).astype(datatype)) |
|
|
|
|
|
|
|
resize_nn = NetResizeNearestNeighbor((2, 6)) |
|
|
|
output = resize_nn(input_tensor) |
|
|
|
|
|
|
|
expected_output = Tensor(np.array([[[[0.1, 0.1, 0.2, 0.2, 0.3, 0.3], |
|
|
|
[0.4, 0.4, 0.5, 0.5, 0.6, 0.6]]], |
|
|
|
[[[0.4, 0.4, 0.5, 0.5, 0.6, 0.6], |
|
|
|
[0.7, 0.7, 0.8, 0.8, 0.9, 0.9]]], |
|
|
|
[[[0.7, 0.7, 0.8, 0.8, 0.9, 0.9], |
|
|
|
[0.1, 0.1, 0.2, 0.2, 0.3, 0.3]]]]).astype(datatype)) |
|
|
|
|
|
|
|
np.testing.assert_array_equal(output.asnumpy(), expected_output.asnumpy()) |
|
|
|
|
|
|
|
def resize_nn_grayscale_align_corners(datatype): |
|
|
|
input_tensor = Tensor( |
|
|
|
np.array([[[[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]]]]).astype(datatype)) |
|
|
|
|
|
|
|
resize_nn_corners_aligned = NetResizeNearestNeighbor( |
|
|
|
(3, 7), align_corners=True) |
|
|
|
output_corners_aligned = resize_nn_corners_aligned(input_tensor) |
|
|
|
|
|
|
|
resize_nn = NetResizeNearestNeighbor((3, 7)) |
|
|
|
output = resize_nn(input_tensor) |
|
|
|
|
|
|
|
expected_output = Tensor(np.array([[[[0.1, 0.2, 0.2, 0.3, 0.3, 0.4, 0.4], |
|
|
|
[0.5, 0.6, 0.6, 0.7, 0.7, 0.8, 0.8], |
|
|
|
[0.5, 0.6, 0.6, 0.7, 0.7, 0.8, 0.8]]]]).astype(datatype)) |
|
|
|
|
|
|
|
np.testing.assert_array_equal( |
|
|
|
output_corners_aligned.asnumpy(), expected_output.asnumpy()) |
|
|
|
np.testing.assert_raises(AssertionError, np.testing.assert_array_equal, |
|
|
|
output.asnumpy(), expected_output.asnumpy()) |
|
|
|
|
|
|
|
def test_resize_nn_grayscale_integer_ratio_half(): |
|
|
|
resize_nn_grayscale_integer_ratio(np.float16) |
|
|
|
|
|
|
|
|
|
|
|
def test_resize_nn_grayscale_integer_ratio_float(): |
|
|
|
resize_nn_grayscale_integer_ratio(np.float32) |
|
|
|
|
|
|
|
def test_resize_nn_grayscale_integer_ratio_double(): |
|
|
|
resize_nn_grayscale_integer_ratio(np.float64) |
|
|
|
|
|
|
|
def test_resize_nn_grayscale_not_integer_ratio_half(): |
|
|
|
resize_nn_grayscale_not_integer_ratio(np.float16) |
|
|
|
|
|
|
|
|
|
|
|
def test_resize_nn_grayscale_not_integer_ratio_float(): |
|
|
|
resize_nn_grayscale_not_integer_ratio(np.float32) |
|
|
|
|
|
|
|
def test_resize_nn_grayscale_not_integer_ratio_double(): |
|
|
|
resize_nn_grayscale_not_integer_ratio(np.float64) |
|
|
|
|
|
|
|
def test_resize_nn_grayscale_multiple_half(): |
|
|
|
resize_nn_grayscale_multiple_images(np.float16) |
|
|
|
|
|
|
|
|
|
|
|
def test_resize_nn_grayscale_multiple_float(): |
|
|
|
resize_nn_grayscale_multiple_images(np.float32) |
|
|
|
|
|
|
|
def test_resize_nn_grayscale_multiple_double(): |
|
|
|
resize_nn_grayscale_multiple_images(np.float64) |
|
|
|
|
|
|
|
def test_resize_nn_grayscale_align_corners_half(): |
|
|
|
resize_nn_grayscale_align_corners(np.float16) |
|
|
|
|
|
|
|
|
|
|
|
def test_resize_nn_grayscale_align_corners_float(): |
|
|
|
resize_nn_grayscale_align_corners(np.float32) |
|
|
|
|
|
|
|
def test_resize_nn_grayscale_align_corners_double(): |
|
|
|
resize_nn_grayscale_align_corners(np.float64) |
|
|
|
|
|
|
|
def test_resize_nn_rgb_integer_ratio_int32(): |
|
|
|
resize_nn_rgb_integer_ratio(np.int32) |
|
|
|
|
|
|
|
def test_resize_nn_rgb_integer_ratio_int64(): |
|
|
|
resize_nn_rgb_integer_ratio(np.int64) |
|
|
|
|
|
|
|
def test_resize_nn_rgb_not_integer_ratio_int32(): |
|
|
|
resize_nn_rgb_not_integer_ratio(np.int32) |
|
|
|
|
|
|
|
def test_resize_nn_rgb_not_integer_ratio_int64(): |
|
|
|
resize_nn_rgb_not_integer_ratio(np.int64) |
|
|
|
|
|
|
|
def test_resize_nn_rgb_multiple_int32(): |
|
|
|
resize_nn_rgb_multiple(np.int32) |
|
|
|
|
|
|
|
def test_resize_nn_rgb_multiple_int64(): |
|
|
|
resize_nn_rgb_multiple(np.int64) |
|
|
|
|
|
|
|
def test_resize_nn_rgb_align_corners_int32(): |
|
|
|
resize_nn_rgb_align_corners(np.int32) |
|
|
|
|
|
|
|
def test_resize_nn_rgb_align_corners_int64(): |
|
|
|
resize_nn_rgb_align_corners(np.int64) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
test_resize_nn_grayscale_integer_ratio_half() |
|
|
|
test_resize_nn_grayscale_integer_ratio_float() |
|
|
|
test_resize_nn_grayscale_integer_ratio_double() |
|
|
|
test_resize_nn_grayscale_not_integer_ratio_half() |
|
|
|
test_resize_nn_grayscale_not_integer_ratio_float() |
|
|
|
test_resize_nn_grayscale_not_integer_ratio_double() |
|
|
|
test_resize_nn_grayscale_multiple_half() |
|
|
|
test_resize_nn_grayscale_multiple_float() |
|
|
|
test_resize_nn_grayscale_multiple_double() |
|
|
|
test_resize_nn_grayscale_align_corners_half() |
|
|
|
test_resize_nn_grayscale_align_corners_float() |
|
|
|
test_resize_nn_rgb_integer_ratio() |
|
|
|
test_resize_nn_rgb_not_integer_ratio() |
|
|
|
test_resize_nn_rgb_multiple() |
|
|
|
test_resize_nn_rgb_align_corners() |
|
|
|
test_resize_nn_grayscale_align_corners_double() |
|
|
|
test_resize_nn_rgb_integer_ratio_int32() |
|
|
|
test_resize_nn_rgb_integer_ratio_int64() |
|
|
|
test_resize_nn_rgb_not_integer_ratio_int32() |
|
|
|
test_resize_nn_rgb_not_integer_ratio_int64() |
|
|
|
test_resize_nn_rgb_multiple_int32() |
|
|
|
test_resize_nn_rgb_multiple_int64() |
|
|
|
test_resize_nn_rgb_align_corners_int32() |
|
|
|
test_resize_nn_rgb_align_corners_int64() |