Browse Source

add res18 infer

tags/v1.2.0-rc1
jiangzhenguang 4 years ago
parent
commit
0366c66bbe
8 changed files with 598 additions and 0 deletions
  1. +35
    -0
      model_zoo/official/cv/resnet/ascend310_infer/inc/utils.h
  2. +14
    -0
      model_zoo/official/cv/resnet/ascend310_infer/src/CMakeLists.txt
  3. +18
    -0
      model_zoo/official/cv/resnet/ascend310_infer/src/build.sh
  4. +147
    -0
      model_zoo/official/cv/resnet/ascend310_infer/src/main.cc
  5. +186
    -0
      model_zoo/official/cv/resnet/ascend310_infer/src/utils.cc
  6. +48
    -0
      model_zoo/official/cv/resnet/create_imagenet2012_label.py
  7. +51
    -0
      model_zoo/official/cv/resnet/postprocess.py
  8. +99
    -0
      model_zoo/official/cv/resnet/scripts/run_infer_310.sh

+ 35
- 0
model_zoo/official/cv/resnet/ascend310_infer/inc/utils.h View File

@@ -0,0 +1,35 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#ifndef MINDSPORE_INFERENCE_UTILS_H_
#define MINDSPORE_INFERENCE_UTILS_H_

#include <sys/stat.h>
#include <dirent.h>
#include <vector>
#include <string>
#include <memory>
#include "include/api/types.h"

std::vector<std::string> GetAllFiles(std::string_view dirName);
DIR *OpenDir(std::string_view dirName);
std::string RealPath(std::string_view path);
mindspore::MSTensor ReadFileToTensor(const std::string &file);
int WriteResult(const std::string& imageFile, const std::vector<mindspore::MSTensor> &outputs);
std::vector<std::string> GetAllFiles(std::string dir_name);
std::vector<std::vector<std::string>> GetAllInputData(std::string dir_name);

#endif

+ 14
- 0
model_zoo/official/cv/resnet/ascend310_infer/src/CMakeLists.txt View File

@@ -0,0 +1,14 @@
cmake_minimum_required(VERSION 3.14.1)
project(MindSporeCxxTestcase[CXX])
add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined")
set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/)
option(MINDSPORE_PATH "mindspore install path" "")
include_directories(${MINDSPORE_PATH})
include_directories(${MINDSPORE_PATH}/include)
include_directories(${PROJECT_SRC_ROOT}/../)
find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib)
file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*)

add_executable(main main.cc utils.cc)
target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags)

+ 18
- 0
model_zoo/official/cv/resnet/ascend310_infer/src/build.sh View File

@@ -0,0 +1,18 @@
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

cmake . -DMINDSPORE_PATH="`pip3.7 show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`"
make

+ 147
- 0
model_zoo/official/cv/resnet/ascend310_infer/src/main.cc View File

@@ -0,0 +1,147 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <sys/time.h>
#include <gflags/gflags.h>
#include <dirent.h>
#include <iostream>
#include <string>
#include <algorithm>
#include <iosfwd>
#include <vector>
#include <fstream>

#include "include/api/model.h"
#include "include/api/context.h"
#include "include/api/types.h"
#include "include/api/serialization.h"
#include "minddata/dataset/include/vision_ascend.h"
#include "minddata/dataset/include/execute.h"
#include "minddata/dataset/include/transforms.h"
#include "minddata/dataset/include/vision.h"
#include "inc/utils.h"

using mindspore::dataset::vision::Decode;
using mindspore::dataset::vision::Resize;
using mindspore::dataset::vision::CenterCrop;
using mindspore::dataset::vision::Normalize;
using mindspore::dataset::vision::HWC2CHW;
using mindspore::dataset::TensorTransform;
using mindspore::GlobalContext;
using mindspore::Serialization;
using mindspore::Model;
using mindspore::ModelContext;
using mindspore::Status;
using mindspore::ModelType;
using mindspore::GraphCell;
using mindspore::kSuccess;
using mindspore::MSTensor;
using mindspore::dataset::Execute;


DEFINE_string(mindir_path, "", "mindir path");
DEFINE_string(dataset_path, ".", "dataset path");
DEFINE_int32(device_id, 0, "device id");

int main(int argc, char **argv) {
gflags::ParseCommandLineFlags(&argc, &argv, true);
if (RealPath(FLAGS_mindir_path).empty()) {
std::cout << "Invalid mindir" << std::endl;
return 1;
}


GlobalContext::SetGlobalDeviceTarget(mindspore::kDeviceTypeAscend310);
GlobalContext::SetGlobalDeviceID(FLAGS_device_id);
auto graph = Serialization::LoadModel(FLAGS_mindir_path, ModelType::kMindIR);
auto model_context = std::make_shared<mindspore::ModelContext>();

Model model(GraphCell(graph), model_context);
Status ret = model.Build();
if (ret != kSuccess) {
std::cout << "ERROR: Build failed." << std::endl;
return 1;
}

auto all_files = GetAllInputData(FLAGS_dataset_path);
if (all_files.empty()) {
std::cout << "ERROR: no input data." << std::endl;
return 1;
}

std::map<double, double> costTime_map;
size_t size = all_files.size();
// Define transform
std::vector<int32_t> crop_paras = {224};
std::vector<int32_t> resize_paras = {256};
std::vector<float> mean = {0.485 * 255, 0.456 * 255, 0.406 * 255};
std::vector<float> std = {0.229 * 255, 0.224 * 255, 0.225 * 255};

std::shared_ptr<TensorTransform> decode(new Decode());
std::shared_ptr<TensorTransform> resize(new Resize(resize_paras));
std::shared_ptr<TensorTransform> centercrop(new CenterCrop(crop_paras));
std::shared_ptr<TensorTransform> normalize(new Normalize(mean, std));
std::shared_ptr<TensorTransform> hwc2chw(new HWC2CHW());

std::vector<std::shared_ptr<TensorTransform>> trans_list = {decode, resize, centercrop, normalize, hwc2chw};
mindspore::dataset::Execute SingleOp(trans_list);

for (size_t i = 0; i < size; ++i) {
for (size_t j = 0; j < all_files[i].size(); ++j) {
struct timeval start = {0};
struct timeval end = {0};
double startTimeMs;
double endTimeMs;
std::vector<MSTensor> inputs;
std::vector<MSTensor> outputs;
std::cout << "Start predict input files:" << all_files[i][j] <<std::endl;
auto imgDvpp = std::make_shared<MSTensor>();
SingleOp(ReadFileToTensor(all_files[i][j]), imgDvpp.get());

inputs.emplace_back(imgDvpp->Name(), imgDvpp->DataType(), imgDvpp->Shape(),
imgDvpp->Data().get(), imgDvpp->DataSize());
gettimeofday(&start, nullptr);
ret = model.Predict(inputs, &outputs);
gettimeofday(&end, nullptr);
if (ret != kSuccess) {
std::cout << "Predict " << all_files[i][j] << " failed." << std::endl;
return 1;
}
startTimeMs = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000;
endTimeMs = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000;
costTime_map.insert(std::pair<double, double>(startTimeMs, endTimeMs));
WriteResult(all_files[i][j], outputs);
}
}
double average = 0.0;
int inferCount = 0;
char tmpCh[256] = {0};
for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) {
double diff = 0.0;
diff = iter->second - iter->first;
average += diff;
inferCount++;
}
average = average / inferCount;
snprintf(tmpCh, sizeof(tmpCh), \
"NN inference cost average time: %4.3f ms of infer_count %d \n", average, inferCount);
std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << inferCount << std::endl;
std::string fileName = "./time_Result" + std::string("/test_perform_static.txt");
std::ofstream fileStream(fileName.c_str(), std::ios::trunc);
fileStream << tmpCh;
fileStream.close();
costTime_map.clear();
return 0;
}

+ 186
- 0
model_zoo/official/cv/resnet/ascend310_infer/src/utils.cc View File

@@ -0,0 +1,186 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include <fstream>
#include <algorithm>
#include <iostream>
#include "inc/utils.h"

using mindspore::MSTensor;
using mindspore::DataType;


std::vector<std::vector<std::string>> GetAllInputData(std::string dir_name) {
std::vector<std::vector<std::string>> ret;

DIR *dir = OpenDir(dir_name);
if (dir == nullptr) {
return {};
}
struct dirent *filename;
/* read all the files in the dir ~ */
std::vector<std::string> sub_dirs;
while ((filename = readdir(dir)) != nullptr) {
std::string d_name = std::string(filename->d_name);
// get rid of "." and ".."
if (d_name == "." || d_name == ".." || d_name.empty()) {
continue;
}
std::string dir_path = RealPath(std::string(dir_name) + "/" + filename->d_name);
struct stat s;
lstat(dir_path.c_str(), &s);
if (!S_ISDIR(s.st_mode)) {
continue;
}

sub_dirs.emplace_back(dir_path);
}
std::sort(sub_dirs.begin(), sub_dirs.end());

(void)std::transform(sub_dirs.begin(), sub_dirs.end(), std::back_inserter(ret),
[](const std::string &d) { return GetAllFiles(d); });

return ret;
}


std::vector<std::string> GetAllFiles(std::string dir_name) {
struct dirent *filename;
DIR *dir = OpenDir(dir_name);
if (dir == nullptr) {
return {};
}

std::vector<std::string> res;
while ((filename = readdir(dir)) != nullptr) {
std::string d_name = std::string(filename->d_name);
if (d_name == "." || d_name == ".." || d_name.size() <= 3) {
continue;
}
res.emplace_back(std::string(dir_name) + "/" + filename->d_name);
}
std::sort(res.begin(), res.end());

return res;
}


std::vector<std::string> GetAllFiles(std::string_view dirName) {
struct dirent *filename;
DIR *dir = OpenDir(dirName);
if (dir == nullptr) {
return {};
}
std::vector<std::string> res;
while ((filename = readdir(dir)) != nullptr) {
std::string dName = std::string(filename->d_name);
if (dName == "." || dName == ".." || filename->d_type != DT_REG) {
continue;
}
res.emplace_back(std::string(dirName) + "/" + filename->d_name);
}
std::sort(res.begin(), res.end());
for (auto &f : res) {
std::cout << "image file: " << f << std::endl;
}
return res;
}


int WriteResult(const std::string& imageFile, const std::vector<MSTensor> &outputs) {
std::string homePath = "./result_Files";
for (size_t i = 0; i < outputs.size(); ++i) {
size_t outputSize;
std::shared_ptr<const void> netOutput;
netOutput = outputs[i].Data();
outputSize = outputs[i].DataSize();
int pos = imageFile.rfind('/');
std::string fileName(imageFile, pos + 1);
fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), '_' + std::to_string(i) + ".bin");
std::string outFileName = homePath + "/" + fileName;
FILE * outputFile = fopen(outFileName.c_str(), "wb");
fwrite(netOutput.get(), outputSize, sizeof(char), outputFile);
fclose(outputFile);
outputFile = nullptr;
}
return 0;
}

mindspore::MSTensor ReadFileToTensor(const std::string &file) {
if (file.empty()) {
std::cout << "Pointer file is nullptr" << std::endl;
return mindspore::MSTensor();
}

std::ifstream ifs(file);
if (!ifs.good()) {
std::cout << "File: " << file << " is not exist" << std::endl;
return mindspore::MSTensor();
}

if (!ifs.is_open()) {
std::cout << "File: " << file << "open failed" << std::endl;
return mindspore::MSTensor();
}

ifs.seekg(0, std::ios::end);
size_t size = ifs.tellg();
mindspore::MSTensor buffer(file, mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size);

ifs.seekg(0, std::ios::beg);
ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size);
ifs.close();

return buffer;
}


DIR *OpenDir(std::string_view dirName) {
if (dirName.empty()) {
std::cout << " dirName is null ! " << std::endl;
return nullptr;
}
std::string realPath = RealPath(dirName);
struct stat s;
lstat(realPath.c_str(), &s);
if (!S_ISDIR(s.st_mode)) {
std::cout << "dirName is not a valid directory !" << std::endl;
return nullptr;
}
DIR *dir;
dir = opendir(realPath.c_str());
if (dir == nullptr) {
std::cout << "Can not open dir " << dirName << std::endl;
return nullptr;
}
std::cout << "Successfully opened the dir " << dirName << std::endl;
return dir;
}

std::string RealPath(std::string_view path) {
char realPathMem[PATH_MAX] = {0};
char *realPathRet = nullptr;
realPathRet = realpath(path.data(), realPathMem);

if (realPathRet == nullptr) {
std::cout << "File: " << path << " is not exist.";
return "";
}

std::string realPath(realPathMem);
std::cout << path << " realpath is: " << realPath << std::endl;
return realPath;
}

+ 48
- 0
model_zoo/official/cv/resnet/create_imagenet2012_label.py View File

@@ -0,0 +1,48 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# less required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""create_imagenet2012_label"""
import os
import json
import argparse

parser = argparse.ArgumentParser(description="resnet imagenet2012 label")
parser.add_argument("--img_path", type=str, required=True, help="imagenet2012 file path.")
args = parser.parse_args()


def create_label(file_path):
print("[WARNING] Create imagenet label. Currently only use for Imagenet2012!")
dirs = os.listdir(file_path)
file_list = []
for file in dirs:
file_list.append(file)
file_list = sorted(file_list)

total = 0
img_label = {}
for i, file_dir in enumerate(file_list):
files = os.listdir(os.path.join(file_path, file_dir))
for f in files:
img_label[f] = i
total += len(files)

with open("imagenet_label.json", "w+") as label:
json.dump(img_label, label)

print("[INFO] Completed! Total {} data.".format(total))


if __name__ == '__main__':
create_label(args.img_path)

+ 51
- 0
model_zoo/official/cv/resnet/postprocess.py View File

@@ -0,0 +1,51 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# less required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""post process for 310 inference"""
import os
import json
import argparse
import numpy as np
from src.config import config2 as config

batch_size = 1
parser = argparse.ArgumentParser(description="resnet inference")
parser.add_argument("--result_path", type=str, required=True, help="result files path.")
parser.add_argument("--label_path", type=str, required=True, help="image file path.")
args = parser.parse_args()


def get_result(result_path, label_path):
files = os.listdir(result_path)
with open(label_path, "r") as label:
labels = json.load(label)

top1 = 0
top5 = 0
total_data = len(files)
for file in files:
img_ids_name = file.split('_0.')[0]
data_path = os.path.join(result_path, img_ids_name + "_0.bin")
result = np.fromfile(data_path, dtype=np.float32).reshape(batch_size, config.class_num)
for batch in range(batch_size):
predict = np.argsort(-result[batch], axis=-1)
if labels[img_ids_name+".JPEG"] == predict[0]:
top1 += 1
if labels[img_ids_name+".JPEG"] in predict[:5]:
top5 += 1
print(f"Total data: {total_data}, top1 accuracy: {top1/total_data}, top5 accuracy: {top5/total_data}.")


if __name__ == '__main__':
get_result(args.result_path, args.label_path)

+ 99
- 0
model_zoo/official/cv/resnet/scripts/run_infer_310.sh View File

@@ -0,0 +1,99 @@
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

if [[ $# -lt 2 || $# -gt 3 ]]; then
echo "Usage: sh run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID]
DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero"
exit 1
fi

get_real_path(){
if [ "${1:0:1}" == "/" ]; then
echo "$1"
else
echo "$(realpath -m $PWD/$1)"
fi
}
model=$(get_real_path $1)
data_path=$(get_real_path $2)

device_id=0
if [ $# == 3 ]; then
device_id=$3
fi

echo "mindir name: "$model
echo "dataset path: "$data_path
echo "device id: "$device_id

export ASCEND_HOME=/usr/local/Ascend/
if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then
export PATH=$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe
export PYTHONPATH=${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH
export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp
else
export PATH=$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
export PYTHONPATH=$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH
export ASCEND_OPP_PATH=$ASCEND_HOME/opp
fi

function compile_app()
{
cd ../ascend310_infer/src/
if [ -f "Makefile" ]; then
make clean
fi
sh build.sh &> build.log
}

function infer()
{
cd -
if [ -d result_Files ]; then
rm -rf ./result_Files
fi
if [ -d time_Result ]; then
rm -rf ./time_Result
fi
mkdir result_Files
mkdir time_Result
../ascend310_infer/src/main --mindir_path=$model --dataset_path=$data_path --device_id=$device_id &> infer.log
}

function cal_acc()
{
python3.7 ../create_imagenet2012_label.py --img_path=$data_path
python3.7 ../postprocess.py --result_path=./result_Files --label_path=./imagenet_label.json &> acc.log &
}

compile_app
if [ $? -ne 0 ]; then
echo "compile app code failed"
exit 1
fi
infer
if [ $? -ne 0 ]; then
echo " execute inference failed"
exit 1
fi
cal_acc
if [ $? -ne 0 ]; then
echo "calculate accuracy failed"
exit 1
fi

Loading…
Cancel
Save