| @@ -0,0 +1,35 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_INFERENCE_UTILS_H_ | |||
| #define MINDSPORE_INFERENCE_UTILS_H_ | |||
| #include <sys/stat.h> | |||
| #include <dirent.h> | |||
| #include <vector> | |||
| #include <string> | |||
| #include <memory> | |||
| #include "include/api/types.h" | |||
| std::vector<std::string> GetAllFiles(std::string_view dirName); | |||
| DIR *OpenDir(std::string_view dirName); | |||
| std::string RealPath(std::string_view path); | |||
| mindspore::MSTensor ReadFileToTensor(const std::string &file); | |||
| int WriteResult(const std::string& imageFile, const std::vector<mindspore::MSTensor> &outputs); | |||
| std::vector<std::string> GetAllFiles(std::string dir_name); | |||
| std::vector<std::vector<std::string>> GetAllInputData(std::string dir_name); | |||
| #endif | |||
| @@ -0,0 +1,14 @@ | |||
| cmake_minimum_required(VERSION 3.14.1) | |||
| project(MindSporeCxxTestcase[CXX]) | |||
| add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0) | |||
| set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined") | |||
| set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/) | |||
| option(MINDSPORE_PATH "mindspore install path" "") | |||
| include_directories(${MINDSPORE_PATH}) | |||
| include_directories(${MINDSPORE_PATH}/include) | |||
| include_directories(${PROJECT_SRC_ROOT}/../) | |||
| find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib) | |||
| file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*) | |||
| add_executable(main main.cc utils.cc) | |||
| target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags) | |||
| @@ -0,0 +1,18 @@ | |||
| #!/bin/bash | |||
| # Copyright 2021 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| cmake . -DMINDSPORE_PATH="`pip3.7 show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`" | |||
| make | |||
| @@ -0,0 +1,147 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <sys/time.h> | |||
| #include <gflags/gflags.h> | |||
| #include <dirent.h> | |||
| #include <iostream> | |||
| #include <string> | |||
| #include <algorithm> | |||
| #include <iosfwd> | |||
| #include <vector> | |||
| #include <fstream> | |||
| #include "include/api/model.h" | |||
| #include "include/api/context.h" | |||
| #include "include/api/types.h" | |||
| #include "include/api/serialization.h" | |||
| #include "minddata/dataset/include/vision_ascend.h" | |||
| #include "minddata/dataset/include/execute.h" | |||
| #include "minddata/dataset/include/transforms.h" | |||
| #include "minddata/dataset/include/vision.h" | |||
| #include "inc/utils.h" | |||
| using mindspore::dataset::vision::Decode; | |||
| using mindspore::dataset::vision::Resize; | |||
| using mindspore::dataset::vision::CenterCrop; | |||
| using mindspore::dataset::vision::Normalize; | |||
| using mindspore::dataset::vision::HWC2CHW; | |||
| using mindspore::dataset::TensorTransform; | |||
| using mindspore::GlobalContext; | |||
| using mindspore::Serialization; | |||
| using mindspore::Model; | |||
| using mindspore::ModelContext; | |||
| using mindspore::Status; | |||
| using mindspore::ModelType; | |||
| using mindspore::GraphCell; | |||
| using mindspore::kSuccess; | |||
| using mindspore::MSTensor; | |||
| using mindspore::dataset::Execute; | |||
| DEFINE_string(mindir_path, "", "mindir path"); | |||
| DEFINE_string(dataset_path, ".", "dataset path"); | |||
| DEFINE_int32(device_id, 0, "device id"); | |||
| int main(int argc, char **argv) { | |||
| gflags::ParseCommandLineFlags(&argc, &argv, true); | |||
| if (RealPath(FLAGS_mindir_path).empty()) { | |||
| std::cout << "Invalid mindir" << std::endl; | |||
| return 1; | |||
| } | |||
| GlobalContext::SetGlobalDeviceTarget(mindspore::kDeviceTypeAscend310); | |||
| GlobalContext::SetGlobalDeviceID(FLAGS_device_id); | |||
| auto graph = Serialization::LoadModel(FLAGS_mindir_path, ModelType::kMindIR); | |||
| auto model_context = std::make_shared<mindspore::ModelContext>(); | |||
| Model model(GraphCell(graph), model_context); | |||
| Status ret = model.Build(); | |||
| if (ret != kSuccess) { | |||
| std::cout << "ERROR: Build failed." << std::endl; | |||
| return 1; | |||
| } | |||
| auto all_files = GetAllInputData(FLAGS_dataset_path); | |||
| if (all_files.empty()) { | |||
| std::cout << "ERROR: no input data." << std::endl; | |||
| return 1; | |||
| } | |||
| std::map<double, double> costTime_map; | |||
| size_t size = all_files.size(); | |||
| // Define transform | |||
| std::vector<int32_t> crop_paras = {224}; | |||
| std::vector<int32_t> resize_paras = {256}; | |||
| std::vector<float> mean = {0.485 * 255, 0.456 * 255, 0.406 * 255}; | |||
| std::vector<float> std = {0.229 * 255, 0.224 * 255, 0.225 * 255}; | |||
| std::shared_ptr<TensorTransform> decode(new Decode()); | |||
| std::shared_ptr<TensorTransform> resize(new Resize(resize_paras)); | |||
| std::shared_ptr<TensorTransform> centercrop(new CenterCrop(crop_paras)); | |||
| std::shared_ptr<TensorTransform> normalize(new Normalize(mean, std)); | |||
| std::shared_ptr<TensorTransform> hwc2chw(new HWC2CHW()); | |||
| std::vector<std::shared_ptr<TensorTransform>> trans_list = {decode, resize, centercrop, normalize, hwc2chw}; | |||
| mindspore::dataset::Execute SingleOp(trans_list); | |||
| for (size_t i = 0; i < size; ++i) { | |||
| for (size_t j = 0; j < all_files[i].size(); ++j) { | |||
| struct timeval start = {0}; | |||
| struct timeval end = {0}; | |||
| double startTimeMs; | |||
| double endTimeMs; | |||
| std::vector<MSTensor> inputs; | |||
| std::vector<MSTensor> outputs; | |||
| std::cout << "Start predict input files:" << all_files[i][j] <<std::endl; | |||
| auto imgDvpp = std::make_shared<MSTensor>(); | |||
| SingleOp(ReadFileToTensor(all_files[i][j]), imgDvpp.get()); | |||
| inputs.emplace_back(imgDvpp->Name(), imgDvpp->DataType(), imgDvpp->Shape(), | |||
| imgDvpp->Data().get(), imgDvpp->DataSize()); | |||
| gettimeofday(&start, nullptr); | |||
| ret = model.Predict(inputs, &outputs); | |||
| gettimeofday(&end, nullptr); | |||
| if (ret != kSuccess) { | |||
| std::cout << "Predict " << all_files[i][j] << " failed." << std::endl; | |||
| return 1; | |||
| } | |||
| startTimeMs = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000; | |||
| endTimeMs = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000; | |||
| costTime_map.insert(std::pair<double, double>(startTimeMs, endTimeMs)); | |||
| WriteResult(all_files[i][j], outputs); | |||
| } | |||
| } | |||
| double average = 0.0; | |||
| int inferCount = 0; | |||
| char tmpCh[256] = {0}; | |||
| for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) { | |||
| double diff = 0.0; | |||
| diff = iter->second - iter->first; | |||
| average += diff; | |||
| inferCount++; | |||
| } | |||
| average = average / inferCount; | |||
| snprintf(tmpCh, sizeof(tmpCh), \ | |||
| "NN inference cost average time: %4.3f ms of infer_count %d \n", average, inferCount); | |||
| std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << inferCount << std::endl; | |||
| std::string fileName = "./time_Result" + std::string("/test_perform_static.txt"); | |||
| std::ofstream fileStream(fileName.c_str(), std::ios::trunc); | |||
| fileStream << tmpCh; | |||
| fileStream.close(); | |||
| costTime_map.clear(); | |||
| return 0; | |||
| } | |||
| @@ -0,0 +1,186 @@ | |||
| /** | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <fstream> | |||
| #include <algorithm> | |||
| #include <iostream> | |||
| #include "inc/utils.h" | |||
| using mindspore::MSTensor; | |||
| using mindspore::DataType; | |||
| std::vector<std::vector<std::string>> GetAllInputData(std::string dir_name) { | |||
| std::vector<std::vector<std::string>> ret; | |||
| DIR *dir = OpenDir(dir_name); | |||
| if (dir == nullptr) { | |||
| return {}; | |||
| } | |||
| struct dirent *filename; | |||
| /* read all the files in the dir ~ */ | |||
| std::vector<std::string> sub_dirs; | |||
| while ((filename = readdir(dir)) != nullptr) { | |||
| std::string d_name = std::string(filename->d_name); | |||
| // get rid of "." and ".." | |||
| if (d_name == "." || d_name == ".." || d_name.empty()) { | |||
| continue; | |||
| } | |||
| std::string dir_path = RealPath(std::string(dir_name) + "/" + filename->d_name); | |||
| struct stat s; | |||
| lstat(dir_path.c_str(), &s); | |||
| if (!S_ISDIR(s.st_mode)) { | |||
| continue; | |||
| } | |||
| sub_dirs.emplace_back(dir_path); | |||
| } | |||
| std::sort(sub_dirs.begin(), sub_dirs.end()); | |||
| (void)std::transform(sub_dirs.begin(), sub_dirs.end(), std::back_inserter(ret), | |||
| [](const std::string &d) { return GetAllFiles(d); }); | |||
| return ret; | |||
| } | |||
| std::vector<std::string> GetAllFiles(std::string dir_name) { | |||
| struct dirent *filename; | |||
| DIR *dir = OpenDir(dir_name); | |||
| if (dir == nullptr) { | |||
| return {}; | |||
| } | |||
| std::vector<std::string> res; | |||
| while ((filename = readdir(dir)) != nullptr) { | |||
| std::string d_name = std::string(filename->d_name); | |||
| if (d_name == "." || d_name == ".." || d_name.size() <= 3) { | |||
| continue; | |||
| } | |||
| res.emplace_back(std::string(dir_name) + "/" + filename->d_name); | |||
| } | |||
| std::sort(res.begin(), res.end()); | |||
| return res; | |||
| } | |||
| std::vector<std::string> GetAllFiles(std::string_view dirName) { | |||
| struct dirent *filename; | |||
| DIR *dir = OpenDir(dirName); | |||
| if (dir == nullptr) { | |||
| return {}; | |||
| } | |||
| std::vector<std::string> res; | |||
| while ((filename = readdir(dir)) != nullptr) { | |||
| std::string dName = std::string(filename->d_name); | |||
| if (dName == "." || dName == ".." || filename->d_type != DT_REG) { | |||
| continue; | |||
| } | |||
| res.emplace_back(std::string(dirName) + "/" + filename->d_name); | |||
| } | |||
| std::sort(res.begin(), res.end()); | |||
| for (auto &f : res) { | |||
| std::cout << "image file: " << f << std::endl; | |||
| } | |||
| return res; | |||
| } | |||
| int WriteResult(const std::string& imageFile, const std::vector<MSTensor> &outputs) { | |||
| std::string homePath = "./result_Files"; | |||
| for (size_t i = 0; i < outputs.size(); ++i) { | |||
| size_t outputSize; | |||
| std::shared_ptr<const void> netOutput; | |||
| netOutput = outputs[i].Data(); | |||
| outputSize = outputs[i].DataSize(); | |||
| int pos = imageFile.rfind('/'); | |||
| std::string fileName(imageFile, pos + 1); | |||
| fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), '_' + std::to_string(i) + ".bin"); | |||
| std::string outFileName = homePath + "/" + fileName; | |||
| FILE * outputFile = fopen(outFileName.c_str(), "wb"); | |||
| fwrite(netOutput.get(), outputSize, sizeof(char), outputFile); | |||
| fclose(outputFile); | |||
| outputFile = nullptr; | |||
| } | |||
| return 0; | |||
| } | |||
| mindspore::MSTensor ReadFileToTensor(const std::string &file) { | |||
| if (file.empty()) { | |||
| std::cout << "Pointer file is nullptr" << std::endl; | |||
| return mindspore::MSTensor(); | |||
| } | |||
| std::ifstream ifs(file); | |||
| if (!ifs.good()) { | |||
| std::cout << "File: " << file << " is not exist" << std::endl; | |||
| return mindspore::MSTensor(); | |||
| } | |||
| if (!ifs.is_open()) { | |||
| std::cout << "File: " << file << "open failed" << std::endl; | |||
| return mindspore::MSTensor(); | |||
| } | |||
| ifs.seekg(0, std::ios::end); | |||
| size_t size = ifs.tellg(); | |||
| mindspore::MSTensor buffer(file, mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size); | |||
| ifs.seekg(0, std::ios::beg); | |||
| ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size); | |||
| ifs.close(); | |||
| return buffer; | |||
| } | |||
| DIR *OpenDir(std::string_view dirName) { | |||
| if (dirName.empty()) { | |||
| std::cout << " dirName is null ! " << std::endl; | |||
| return nullptr; | |||
| } | |||
| std::string realPath = RealPath(dirName); | |||
| struct stat s; | |||
| lstat(realPath.c_str(), &s); | |||
| if (!S_ISDIR(s.st_mode)) { | |||
| std::cout << "dirName is not a valid directory !" << std::endl; | |||
| return nullptr; | |||
| } | |||
| DIR *dir; | |||
| dir = opendir(realPath.c_str()); | |||
| if (dir == nullptr) { | |||
| std::cout << "Can not open dir " << dirName << std::endl; | |||
| return nullptr; | |||
| } | |||
| std::cout << "Successfully opened the dir " << dirName << std::endl; | |||
| return dir; | |||
| } | |||
| std::string RealPath(std::string_view path) { | |||
| char realPathMem[PATH_MAX] = {0}; | |||
| char *realPathRet = nullptr; | |||
| realPathRet = realpath(path.data(), realPathMem); | |||
| if (realPathRet == nullptr) { | |||
| std::cout << "File: " << path << " is not exist."; | |||
| return ""; | |||
| } | |||
| std::string realPath(realPathMem); | |||
| std::cout << path << " realpath is: " << realPath << std::endl; | |||
| return realPath; | |||
| } | |||
| @@ -0,0 +1,48 @@ | |||
| # Copyright 2021 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # less required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """create_imagenet2012_label""" | |||
| import os | |||
| import json | |||
| import argparse | |||
| parser = argparse.ArgumentParser(description="resnet imagenet2012 label") | |||
| parser.add_argument("--img_path", type=str, required=True, help="imagenet2012 file path.") | |||
| args = parser.parse_args() | |||
| def create_label(file_path): | |||
| print("[WARNING] Create imagenet label. Currently only use for Imagenet2012!") | |||
| dirs = os.listdir(file_path) | |||
| file_list = [] | |||
| for file in dirs: | |||
| file_list.append(file) | |||
| file_list = sorted(file_list) | |||
| total = 0 | |||
| img_label = {} | |||
| for i, file_dir in enumerate(file_list): | |||
| files = os.listdir(os.path.join(file_path, file_dir)) | |||
| for f in files: | |||
| img_label[f] = i | |||
| total += len(files) | |||
| with open("imagenet_label.json", "w+") as label: | |||
| json.dump(img_label, label) | |||
| print("[INFO] Completed! Total {} data.".format(total)) | |||
| if __name__ == '__main__': | |||
| create_label(args.img_path) | |||
| @@ -0,0 +1,51 @@ | |||
| # Copyright 2021 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # less required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """post process for 310 inference""" | |||
| import os | |||
| import json | |||
| import argparse | |||
| import numpy as np | |||
| from src.config import config2 as config | |||
| batch_size = 1 | |||
| parser = argparse.ArgumentParser(description="resnet inference") | |||
| parser.add_argument("--result_path", type=str, required=True, help="result files path.") | |||
| parser.add_argument("--label_path", type=str, required=True, help="image file path.") | |||
| args = parser.parse_args() | |||
| def get_result(result_path, label_path): | |||
| files = os.listdir(result_path) | |||
| with open(label_path, "r") as label: | |||
| labels = json.load(label) | |||
| top1 = 0 | |||
| top5 = 0 | |||
| total_data = len(files) | |||
| for file in files: | |||
| img_ids_name = file.split('_0.')[0] | |||
| data_path = os.path.join(result_path, img_ids_name + "_0.bin") | |||
| result = np.fromfile(data_path, dtype=np.float32).reshape(batch_size, config.class_num) | |||
| for batch in range(batch_size): | |||
| predict = np.argsort(-result[batch], axis=-1) | |||
| if labels[img_ids_name+".JPEG"] == predict[0]: | |||
| top1 += 1 | |||
| if labels[img_ids_name+".JPEG"] in predict[:5]: | |||
| top5 += 1 | |||
| print(f"Total data: {total_data}, top1 accuracy: {top1/total_data}, top5 accuracy: {top5/total_data}.") | |||
| if __name__ == '__main__': | |||
| get_result(args.result_path, args.label_path) | |||
| @@ -0,0 +1,99 @@ | |||
| #!/bin/bash | |||
| # Copyright 2021 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| if [[ $# -lt 2 || $# -gt 3 ]]; then | |||
| echo "Usage: sh run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID] | |||
| DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero" | |||
| exit 1 | |||
| fi | |||
| get_real_path(){ | |||
| if [ "${1:0:1}" == "/" ]; then | |||
| echo "$1" | |||
| else | |||
| echo "$(realpath -m $PWD/$1)" | |||
| fi | |||
| } | |||
| model=$(get_real_path $1) | |||
| data_path=$(get_real_path $2) | |||
| device_id=0 | |||
| if [ $# == 3 ]; then | |||
| device_id=$3 | |||
| fi | |||
| echo "mindir name: "$model | |||
| echo "dataset path: "$data_path | |||
| echo "device id: "$device_id | |||
| export ASCEND_HOME=/usr/local/Ascend/ | |||
| if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then | |||
| export PATH=$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH | |||
| export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH | |||
| export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe | |||
| export PYTHONPATH=${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH | |||
| export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp | |||
| else | |||
| export PATH=$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH | |||
| export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH | |||
| export PYTHONPATH=$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH | |||
| export ASCEND_OPP_PATH=$ASCEND_HOME/opp | |||
| fi | |||
| function compile_app() | |||
| { | |||
| cd ../ascend310_infer/src/ | |||
| if [ -f "Makefile" ]; then | |||
| make clean | |||
| fi | |||
| sh build.sh &> build.log | |||
| } | |||
| function infer() | |||
| { | |||
| cd - | |||
| if [ -d result_Files ]; then | |||
| rm -rf ./result_Files | |||
| fi | |||
| if [ -d time_Result ]; then | |||
| rm -rf ./time_Result | |||
| fi | |||
| mkdir result_Files | |||
| mkdir time_Result | |||
| ../ascend310_infer/src/main --mindir_path=$model --dataset_path=$data_path --device_id=$device_id &> infer.log | |||
| } | |||
| function cal_acc() | |||
| { | |||
| python3.7 ../create_imagenet2012_label.py --img_path=$data_path | |||
| python3.7 ../postprocess.py --result_path=./result_Files --label_path=./imagenet_label.json &> acc.log & | |||
| } | |||
| compile_app | |||
| if [ $? -ne 0 ]; then | |||
| echo "compile app code failed" | |||
| exit 1 | |||
| fi | |||
| infer | |||
| if [ $? -ne 0 ]; then | |||
| echo " execute inference failed" | |||
| exit 1 | |||
| fi | |||
| cal_acc | |||
| if [ $? -ne 0 ]; then | |||
| echo "calculate accuracy failed" | |||
| exit 1 | |||
| fi | |||