Browse Source

!4011 fix bug of pooing int8

Merge pull request !4011 from fuzhiye/tmp
tags/v0.7.0-beta
mindspore-ci-bot Gitee 5 years ago
parent
commit
025e258f1a
15 changed files with 186 additions and 74 deletions
  1. +1
    -5
      mindspore/lite/src/runtime/kernel/arm/base/pooling_base.cc
  2. +36
    -7
      mindspore/lite/src/runtime/kernel/arm/fp16/convolution_3x3_fp16.cc
  3. +4
    -0
      mindspore/lite/src/runtime/kernel/arm/fp16/convolution_3x3_fp16.h
  4. +33
    -9
      mindspore/lite/src/runtime/kernel/arm/fp16/convolution_fp16.cc
  5. +5
    -8
      mindspore/lite/src/runtime/kernel/arm/fp16/convolution_fp16.h
  6. +3
    -1
      mindspore/lite/src/runtime/kernel/arm/fp32/convolution.cc
  7. +6
    -0
      mindspore/lite/src/runtime/kernel/arm/fp32/convolution_3x3.cc
  8. +6
    -1
      mindspore/lite/src/runtime/kernel/arm/fp32/convolution_winograd.cc
  9. +5
    -1
      mindspore/lite/src/runtime/kernel/arm/int8/convolution_3x3_int8.cc
  10. +10
    -0
      mindspore/lite/src/runtime/kernel/arm/int8/convolution_int8.cc
  11. +20
    -9
      mindspore/lite/src/runtime/kernel/arm/opclib/fp16/conv_fp16.cc
  12. +4
    -0
      mindspore/lite/src/runtime/kernel/arm/opclib/fp16/pack_fp16.cc
  13. +24
    -19
      mindspore/lite/src/runtime/kernel/arm/opclib/fp16/winograd_transform_fp16.cc
  14. +19
    -10
      mindspore/lite/src/runtime/kernel/arm/opclib/fp32/conv.cc
  15. +10
    -4
      mindspore/lite/src/runtime/kernel/arm/opclib/int8/pooling_int8.cc

+ 1
- 5
mindspore/lite/src/runtime/kernel/arm/base/pooling_base.cc View File

@@ -37,15 +37,11 @@ int PoolingBaseCPUKernel::SetQuantParam() {
auto in_quant_arg = input_tensor->GetQuantParams();
auto *out_tensor = outputs_.at(kOutputIndex);
auto out_quant_arg = out_tensor->GetQuantParams();
if (in_quant_arg.front().scale != out_quant_arg.front().scale ||
in_quant_arg.front().zeroPoint != out_quant_arg.front().zeroPoint) {
MS_LOG(ERROR) << "Scale/ZeroPoint of output must be equal to input's";
return RET_ERROR;
}
pooling_quant_arg_[0][0].scale_ = in_quant_arg.front().scale;
pooling_quant_arg_[0][0].zp_ = in_quant_arg.front().zeroPoint;
pooling_quant_arg_[1][0].scale_ = out_quant_arg.front().scale;
pooling_quant_arg_[1][0].zp_ = out_quant_arg.front().zeroPoint;
pooling_param_->quant_args_ = pooling_quant_arg_;
return RET_OK;
}



+ 36
- 7
mindspore/lite/src/runtime/kernel/arm/fp16/convolution_3x3_fp16.cc View File

@@ -56,7 +56,7 @@ int Convolution3x3FP16CPUKernel::InitWeightBias() {
int iC4 = UP_DIV(input_channel, C4NUM);
int oC8 = UP_DIV(output_channel, C8NUM);
// init weight
size_t transformed_size = iC4 * C8NUM * oC8 * C8NUM * 36 * sizeof(float16_t);
size_t transformed_size = iC4 * C4NUM * oC8 * C8NUM * 36 * sizeof(float16_t);
transformed_filter_addr_ = reinterpret_cast<float16_t *>(malloc(transformed_size));
if (transformed_filter_addr_ == nullptr) {
MS_LOG(ERROR) << "malloc transformed_filter_addr_ failed.";
@@ -101,6 +101,8 @@ int Convolution3x3FP16CPUKernel::InitTmpBuffer() {
int k_plane = 36;
int iC4 = UP_DIV(conv_param_->input_channel_, C4NUM);
int oC8 = UP_DIV(conv_param_->output_channel_, C8NUM);

/*=============================tile_buffer_============================*/
size_t tile_buffer_size = thread_count_ * tile_num * k_plane * iC4 * C4NUM * sizeof(float16_t);
tile_buffer_ = reinterpret_cast<float16_t *>(malloc(tile_buffer_size));
if (tile_buffer_ == nullptr) {
@@ -109,6 +111,7 @@ int Convolution3x3FP16CPUKernel::InitTmpBuffer() {
}
memset(tile_buffer_, 0, tile_buffer_size);

/*=============================block_unit_buffer_============================*/
size_t block_unit_buffer_size = thread_count_ * k_plane * C4NUM * sizeof(float16_t);
block_unit_buffer_ = reinterpret_cast<float16_t *>(malloc(block_unit_buffer_size));
if (block_unit_buffer_ == nullptr) {
@@ -117,6 +120,7 @@ int Convolution3x3FP16CPUKernel::InitTmpBuffer() {
}
memset(block_unit_buffer_, 0, block_unit_buffer_size);

/*=============================tmp_dst_buffer_============================*/
size_t tmp_dst_buffer_size = thread_count_ * tile_num * k_plane * oC8 * C8NUM * sizeof(float16_t);
tmp_dst_buffer_ = reinterpret_cast<float16_t *>(malloc(tmp_dst_buffer_size));
if (tmp_dst_buffer_ == nullptr) {
@@ -125,6 +129,7 @@ int Convolution3x3FP16CPUKernel::InitTmpBuffer() {
}
memset(tmp_dst_buffer_, 0, tmp_dst_buffer_size);

/*=============================tmp_out_============================*/
size_t tmp_out_size = oC8 * C8NUM * conv_param_->output_batch_ * conv_param_->output_h_ * conv_param_->output_w_ *
tile_num * sizeof(float16_t);
tmp_out_ = reinterpret_cast<float16_t *>(malloc(tmp_out_size));
@@ -134,6 +139,7 @@ int Convolution3x3FP16CPUKernel::InitTmpBuffer() {
}
memset(tmp_out_, 0, tmp_out_size);

/*=============================fp16_input_============================*/
size_t fp16_input_size = conv_param_->input_channel_ * conv_param_->input_batch_ * conv_param_->input_h_ *
conv_param_->input_w_ * sizeof(float16_t);
fp16_input_ = reinterpret_cast<float16_t *>(malloc(fp16_input_size));
@@ -143,7 +149,7 @@ int Convolution3x3FP16CPUKernel::InitTmpBuffer() {
}
memset(fp16_input_, 0, fp16_input_size);

// init nhwc4 input
/*=============================nhwc4_input_============================*/
size_t nhwc4_input_size =
iC4 * C4NUM * conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_ * sizeof(float16_t);
nhwc4_input_ = malloc(nhwc4_input_size);
@@ -152,12 +158,19 @@ int Convolution3x3FP16CPUKernel::InitTmpBuffer() {
return RET_ERROR;
}
memset(nhwc4_input_, 0, nhwc4_input_size);

/*=============================fp16_out_============================*/
size_t fp16_output_size = conv_param_->output_channel_ * conv_param_->output_batch_ * conv_param_->output_h_ *
conv_param_->output_w_ * sizeof(float16_t);
fp16_out_ = reinterpret_cast<float16_t *>(malloc(fp16_output_size));
if (fp16_out_ == nullptr) {
MS_LOG(ERROR) << "malloc fp16_out_ failed.";
return RET_ERROR;
}
return RET_OK;
}

void Convolution3x3FP16CPUKernel::ConfigInputOutput() {
auto output_tensor = outputs_.at(kOutputIndex);
output_tensor->SetFormat(schema::Format_NHWC);
auto input_tensor = inputs_.at(kInputIndex);
auto input_format = input_tensor->GetFormat();
schema::Format execute_format = schema::Format_NHWC4;
@@ -201,6 +214,15 @@ int Convolution3x3FP16CPUKernel::ReSize() {
if (tmp_out_ != nullptr) {
free(tmp_out_);
}
if (fp16_out_ != nullptr) {
free(fp16_out_);
}
if (fp16_input_ != nullptr) {
free(fp16_input_);
}
if (nhwc4_input_ != nullptr) {
free(nhwc4_input_);
}

auto ret = ConvolutionBaseCPUKernel::Init();
if (ret != RET_OK) {
@@ -216,9 +238,8 @@ int Convolution3x3FP16CPUKernel::ReSize() {
}

int Convolution3x3FP16CPUKernel::RunImpl(int task_id) {
auto output_addr = reinterpret_cast<float16_t *>(outputs_.at(kOutputIndex)->Data());
Conv3x3Fp16(reinterpret_cast<float16_t *>(nhwc4_input_), transformed_filter_addr_,
reinterpret_cast<float16_t *>(bias_data_), output_addr, tile_buffer_, block_unit_buffer_, tmp_dst_buffer_,
reinterpret_cast<float16_t *>(bias_data_), fp16_out_, tile_buffer_, block_unit_buffer_, tmp_dst_buffer_,
tmp_out_, task_id, conv_param_);
return RET_OK;
}
@@ -234,12 +255,13 @@ int Convolution3x3Fp16Impl(int task_id, LiteParallelGroupEnv *penv, void *cdata)
}

int Convolution3x3FP16CPUKernel::Run() {
// cast fp32 input data to fp16
auto input_tensor = inputs_.at(kInputIndex);
auto ori_input_data = reinterpret_cast<float *>(input_tensor->Data());
// cast fp32 input data to fp16
for (int i = 0; i < input_tensor->ElementsNum(); ++i) {
fp16_input_[i] = (float16_t)ori_input_data[i];
}

int in_batch = conv_param_->input_batch_;
int in_h = conv_param_->input_h_;
int in_w = conv_param_->input_w_;
@@ -251,6 +273,13 @@ int Convolution3x3FP16CPUKernel::Run() {
MS_LOG(ERROR) << "conv3x3 fp16 error error_code[" << error_code << "]";
return RET_ERROR;
}

// cast fp16 out to fp32 data
auto out_tensor = outputs_.at(kOutputIndex);
auto output_addr = reinterpret_cast<float *>(out_tensor->Data());
for (int j = 0; j < out_tensor->ElementsNum(); ++j) {
output_addr[j] = (float)fp16_out_[j];
}
return RET_OK;
}
} // namespace mindspore::kernel

+ 4
- 0
mindspore/lite/src/runtime/kernel/arm/fp16/convolution_3x3_fp16.h View File

@@ -36,6 +36,9 @@ class Convolution3x3FP16CPUKernel : public ConvolutionBaseCPUKernel {
if (fp16_weight_ != nullptr) {
free(fp16_weight_);
}
if (fp16_out_ != nullptr) {
free(fp16_out_);
}
if (transformed_filter_addr_ != nullptr) {
free(transformed_filter_addr_);
}
@@ -64,6 +67,7 @@ class Convolution3x3FP16CPUKernel : public ConvolutionBaseCPUKernel {
private:
float16_t *fp16_input_;
float16_t *fp16_weight_;
float16_t *fp16_out_;
float16_t *transformed_filter_addr_;
float16_t *tile_buffer_;
float16_t *block_unit_buffer_;


+ 33
- 9
mindspore/lite/src/runtime/kernel/arm/fp16/convolution_fp16.cc View File

@@ -37,9 +37,9 @@ int ConvolutionFP16CPUKernel::InitWeightBias() {
int in_channel = conv_param_->input_channel_;
int out_channel = conv_param_->output_channel_;
int oc8 = UP_DIV(out_channel, C8NUM);
int channel_block = UP_DIV(in_channel, C4NUM);
int ic4 = UP_DIV(in_channel, C4NUM);
int kernel_plane = kernel_h * kernel_w;
int pack_weight_size = oc8 * channel_block * C8NUM * C4NUM * kernel_plane;
int pack_weight_size = oc8 * ic4 * C8NUM * C4NUM * kernel_plane;

// init weight
float *origin_weight = reinterpret_cast<float *>(inputs_.at(kWeightIndex)->Data());
@@ -49,10 +49,10 @@ int ConvolutionFP16CPUKernel::InitWeightBias() {
MS_LOG(ERROR) << "malloc fp16_weight_ failed.";
return RET_ERROR;
}
memset(fp16_weight_, 0, fp16_weight_size);
for (int i = 0; i < fp16_weight_size / sizeof(float16_t); ++i) {
fp16_weight_[i] = (float16_t)origin_weight[i];
}

packed_weight_ = reinterpret_cast<float16_t *>(malloc(pack_weight_size * sizeof(float16_t)));
if (packed_weight_ == nullptr) {
MS_LOG(ERROR) << "malloc packed_weight_ failed.";
@@ -95,6 +95,8 @@ int ConvolutionFP16CPUKernel::InitTmpBuffer() {
int output_tile_count = UP_DIV(output_count, cal_num);
int unit_size = kernel_plane * channel_block * C4NUM;
int packed_input_size = output_tile_count * cal_num * unit_size;

/*=============================packed_input_============================*/
packed_input_ = reinterpret_cast<float16_t *>(malloc(in_batch * packed_input_size * sizeof(float16_t)));
if (packed_input_ == nullptr) {
MS_LOG(ERROR) << "malloc packed_input_ failed.";
@@ -102,6 +104,7 @@ int ConvolutionFP16CPUKernel::InitTmpBuffer() {
}
memset(packed_input_, 0, in_batch * packed_input_size * sizeof(float16_t));

/*=============================fp16_input_============================*/
size_t fp16_input_size =
in_channel * conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_ * sizeof(float16_t);
fp16_input_ = reinterpret_cast<float16_t *>(malloc(fp16_input_size));
@@ -109,8 +112,8 @@ int ConvolutionFP16CPUKernel::InitTmpBuffer() {
MS_LOG(ERROR) << "malloc fp16_input_ failed.";
return RET_ERROR;
}
memset(fp16_input_, 0, fp16_input_size);

/*=============================nhwc4_input_============================*/
size_t nhwc4_input_size = channel_block * C4NUM * conv_param_->input_batch_ * conv_param_->input_h_ *
conv_param_->input_w_ * sizeof(float16_t);
nhwc4_input_ = malloc(nhwc4_input_size);
@@ -120,11 +123,21 @@ int ConvolutionFP16CPUKernel::InitTmpBuffer() {
}
memset(nhwc4_input_, 0, nhwc4_input_size);

/*=============================tmp_output_block_============================*/
tmp_output_block_ = reinterpret_cast<float16_t *>(malloc(cal_num * out_channel * sizeof(float16_t)));
if (tmp_output_block_ == nullptr) {
MS_LOG(ERROR) << "malloc tmp_output_block_ failed.";
return RET_ERROR;
}

/*=============================fp16_out_============================*/
size_t fp16_output_size =
out_channel * conv_param_->output_batch_ * conv_param_->output_h_ * conv_param_->output_w_ * sizeof(float16_t);
fp16_out_ = reinterpret_cast<float16_t *>(malloc(fp16_output_size));
if (fp16_out_ == nullptr) {
MS_LOG(ERROR) << "malloc fp16_out_ failed.";
return RET_ERROR;
}
return RET_OK;
}

@@ -137,8 +150,6 @@ void ConvolutionFP16CPUKernel::ConfigInputOutput() {
MS_LOG(ERROR) << "layout convert func is nullptr.";
return;
}
auto output_tensor = outputs_.at(kOutputIndex);
output_tensor->SetFormat(schema::Format_NHWC);
}

int ConvolutionFP16CPUKernel::Init() {
@@ -171,6 +182,12 @@ int ConvolutionFP16CPUKernel::ReSize() {
if (nhwc4_input_ != nullptr) {
free(nhwc4_input_);
}
if (fp16_input_ != nullptr) {
free(fp16_input_);
}
if (fp16_out_ != nullptr) {
free(fp16_out_);
}

auto ret = ConvolutionBaseCPUKernel::Init();
if (ret != RET_OK) {
@@ -186,9 +203,8 @@ int ConvolutionFP16CPUKernel::ReSize() {
}

int ConvolutionFP16CPUKernel::RunImpl(int task_id) {
auto output_addr = reinterpret_cast<float16_t *>(outputs_.at(kOutputIndex)->Data());
ConvFp16(reinterpret_cast<float16_t *>(nhwc4_input_), packed_input_, packed_weight_,
reinterpret_cast<float16_t *>(bias_data_), tmp_output_block_, output_addr, task_id, conv_param_);
reinterpret_cast<float16_t *>(bias_data_), tmp_output_block_, fp16_out_, task_id, conv_param_);
return RET_OK;
}

@@ -203,12 +219,13 @@ int ConvolutionFp16Impl(int task_id, LiteParallelGroupEnv *penv, void *cdata) {
}

int ConvolutionFP16CPUKernel::Run() {
// cast fp32 input data to fp16
auto input_tensor = inputs_.at(kInputIndex);
auto ori_input_data = reinterpret_cast<float *>(input_tensor->Data());
// cast fp32 input data to fp16
for (int i = 0; i < input_tensor->ElementsNum(); ++i) {
fp16_input_[i] = (float16_t)ori_input_data[i];
}

int in_batch = conv_param_->input_batch_;
int in_h = conv_param_->input_h_;
int in_w = conv_param_->input_w_;
@@ -220,6 +237,13 @@ int ConvolutionFP16CPUKernel::Run() {
MS_LOG(ERROR) << "conv fp16 error error_code[" << error_code << "]";
return RET_ERROR;
}

// cast fp16 out to fp32 data
auto out_tensor = outputs_.at(kOutputIndex);
auto output_addr = reinterpret_cast<float *>(out_tensor->Data());
for (int j = 0; j < out_tensor->ElementsNum(); ++j) {
output_addr[j] = (float)fp16_out_[j];
}
return RET_OK;
}



+ 5
- 8
mindspore/lite/src/runtime/kernel/arm/fp16/convolution_fp16.h View File

@@ -23,15 +23,11 @@
#include "src/runtime/kernel/arm/base/convolution_base.h"

namespace mindspore::kernel {
typedef void (*FP16_GEMM_FUNC)(float16_t *output, float16_t *input, float16_t *weight, float16_t *bias, size_t step,
size_t ic4, size_t oc8, size_t offset, size_t mode, size_t writeC4, size_t relu,
size_t relu6);

class ConvolutionFP16CPUKernel : public ConvolutionBaseCPUKernel {
public:
ConvolutionFP16CPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const Context *ctx)
: ConvolutionBaseCPUKernel(parameter, inputs, outputs, ctx) {}
: ConvolutionBaseCPUKernel(parameter, inputs, outputs, ctx) {}
~ConvolutionFP16CPUKernel() override {
if (fp16_input_ != nullptr) {
free(fp16_input_);
@@ -39,6 +35,9 @@ class ConvolutionFP16CPUKernel : public ConvolutionBaseCPUKernel {
if (fp16_weight_ != nullptr) {
free(fp16_weight_);
}
if (fp16_out_ != nullptr) {
free(fp16_out_);
}
if (packed_input_ != nullptr) {
free(packed_input_);
}
@@ -59,15 +58,13 @@ class ConvolutionFP16CPUKernel : public ConvolutionBaseCPUKernel {
void ConfigInputOutput();

private:
bool support_fp16_ = true;
float16_t *fp16_input_;
float16_t *fp16_weight_;
float16_t *fp16_out_;
float16_t *packed_input_;
float16_t *packed_weight_;
float16_t *tmp_output_block_;
FP16_GEMM_FUNC gemm_func_ = nullptr;
};
} // namespace mindspore::kernel

#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_CONVOLUTION_FP16_H_


+ 3
- 1
mindspore/lite/src/runtime/kernel/arm/fp32/convolution.cc View File

@@ -89,6 +89,7 @@ int ConvolutionCPUKernel::InitTmpBuffer() {
int output_tile_count = UP_DIV(output_count, TILE_NUM);
int unit_size = kernel_plane * ic4 * C4NUM;
int packed_input_size = output_tile_count * TILE_NUM * unit_size;
/*=============================packed_input============================*/
packed_input_ = reinterpret_cast<float *>(malloc(in_batch * packed_input_size * sizeof(float)));
if (packed_input_ == nullptr) {
MS_LOG(ERROR) << "malloc packed input failed.";
@@ -96,6 +97,7 @@ int ConvolutionCPUKernel::InitTmpBuffer() {
}
memset(packed_input_, 0, in_batch * packed_input_size * sizeof(float));

/*=============================nhwc4_input_============================*/
size_t nhwc4_input_size =
ic4 * C4NUM * conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_ * sizeof(float);
nhwc4_input_ = malloc(nhwc4_input_size);
@@ -105,7 +107,7 @@ int ConvolutionCPUKernel::InitTmpBuffer() {
}
memset(nhwc4_input_, 0, nhwc4_input_size);

// tmp out
/*=============================tmp_output_block_============================*/
tmp_output_block_ = reinterpret_cast<float *>(malloc(TILE_NUM * out_channel * sizeof(float)));
if (tmp_output_block_ == nullptr) {
MS_LOG(ERROR) << "malloc tmp output block failed.";


+ 6
- 0
mindspore/lite/src/runtime/kernel/arm/fp32/convolution_3x3.cc View File

@@ -94,6 +94,8 @@ int Convolution3x3CPUKernel::InitTmpBuffer() {
int iC4 = UP_DIV(conv_param_->input_channel_, C4NUM);
int oC4 = UP_DIV(conv_param_->output_channel_, C4NUM);
int k_plane = 16;

/*=============================tile_buffer_============================*/
size_t tile_buffer_size = thread_count_ * TILE_NUM * k_plane * iC4 * C4NUM * sizeof(float);
tile_buffer_ = reinterpret_cast<float *>(malloc(tile_buffer_size));
if (tile_buffer_ == nullptr) {
@@ -102,6 +104,7 @@ int Convolution3x3CPUKernel::InitTmpBuffer() {
}
memset(tile_buffer_, 0, tile_buffer_size);

/*=============================block_unit_buffer_============================*/
size_t block_unit_buffer_size = thread_count_ * k_plane * C4NUM * sizeof(float);
block_unit_buffer_ = reinterpret_cast<float *>(malloc(block_unit_buffer_size));
if (block_unit_buffer_ == nullptr) {
@@ -110,6 +113,7 @@ int Convolution3x3CPUKernel::InitTmpBuffer() {
}
memset(block_unit_buffer_, 0, block_unit_buffer_size);

/*=============================tmp_dst_buffer_============================*/
size_t tmp_dst_buffer_size = thread_count_ * TILE_NUM * k_plane * oC4 * C4NUM * sizeof(float);
tmp_dst_buffer_ = reinterpret_cast<float *>(malloc(tmp_dst_buffer_size));
if (tmp_dst_buffer_ == nullptr) {
@@ -118,6 +122,7 @@ int Convolution3x3CPUKernel::InitTmpBuffer() {
}
memset(tmp_dst_buffer_, 0, tmp_dst_buffer_size);

/*=============================nhwc4_input_============================*/
size_t nhwc4_input_size =
iC4 * C4NUM * conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_ * sizeof(float);
nhwc4_input_ = malloc(nhwc4_input_size);
@@ -127,6 +132,7 @@ int Convolution3x3CPUKernel::InitTmpBuffer() {
}
memset(nhwc4_input_, 0, nhwc4_input_size);

/*=============================nc4hw4_out_============================*/
size_t nc4hw4_out_size =
oC4 * C4NUM * conv_param_->output_batch_ * conv_param_->output_h_ * conv_param_->output_w_ * sizeof(float);
nc4hw4_out_ = reinterpret_cast<float *>(malloc(nc4hw4_out_size));


+ 6
- 1
mindspore/lite/src/runtime/kernel/arm/fp32/convolution_winograd.cc View File

@@ -165,6 +165,7 @@ int ConvolutionWinogradCPUKernel::InitTmpBuffer() {
int ic4 = UP_DIV(channel_in, C4NUM);
int oc4 = UP_DIV(channel_out, C4NUM);

/*=============================trans_input_============================*/
size_t tile_buffer_size = thread_count_ * TILE_NUM * input_unit_ * input_unit_ * ic4 * C4NUM * sizeof(float);
trans_input_ = reinterpret_cast<float *>(malloc(tile_buffer_size));
if (trans_input_ == nullptr) {
@@ -173,6 +174,7 @@ int ConvolutionWinogradCPUKernel::InitTmpBuffer() {
}
memset(trans_input_, 0, tile_buffer_size);

/*=============================gemm_out_============================*/
gemm_out_ = reinterpret_cast<float *>(
malloc(thread_count_ * TILE_NUM * input_unit_ * input_unit_ * oc4 * C4NUM * sizeof(float)));
if (gemm_out_ == nullptr) {
@@ -180,6 +182,7 @@ int ConvolutionWinogradCPUKernel::InitTmpBuffer() {
return RET_ERROR;
}

/*=============================tmp_out_data_============================*/
int out_w_block = UP_DIV(output_w, output_unit_);
int out_h_block = UP_DIV(output_h, output_unit_);
tmp_out_data_ = reinterpret_cast<float *>(
@@ -189,7 +192,8 @@ int ConvolutionWinogradCPUKernel::InitTmpBuffer() {
return RET_ERROR;
}

tmp_data_ = reinterpret_cast<float *>(malloc(C4NUM * input_unit_ * input_unit_ * sizeof(float)));
/*=============================tmp_data_============================*/
tmp_data_ = reinterpret_cast<float *>(malloc(thread_count_ * C4NUM * input_unit_ * input_unit_ * sizeof(float)));
if (tmp_data_ == nullptr) {
MS_LOG(ERROR) << "malloc tmp_data_ failed.";
return RET_ERROR;
@@ -201,6 +205,7 @@ int ConvolutionWinogradCPUKernel::InitTmpBuffer() {
tmp_buffer_address_list_[2] = tmp_out_data_;
tmp_buffer_address_list_[3] = tmp_data_;

/*=============================nhwc4_input_============================*/
size_t nhwc4_input_size =
ic4 * C4NUM * conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_ * sizeof(float);
nhwc4_input_ = malloc(nhwc4_input_size);


+ 5
- 1
mindspore/lite/src/runtime/kernel/arm/int8/convolution_3x3_int8.cc View File

@@ -108,6 +108,7 @@ int Convolution3x3Int8CPUKernel::InitTmpBuffer() {
int output_w = conv_param_->output_w_;
int output_h = conv_param_->output_h_;

/*=============================tile_buffer_============================*/
size_t tile_buffer_size = thread_count_ * TILE_NUM * 16 * ic8 * C8NUM * sizeof(int16_t);
tile_buffer_ = reinterpret_cast<int16_t *>(malloc(tile_buffer_size));
if (tile_buffer_ == nullptr) {
@@ -116,6 +117,7 @@ int Convolution3x3Int8CPUKernel::InitTmpBuffer() {
}
memset(tile_buffer_, 0, tile_buffer_size);

/*=============================block_unit_buffer_============================*/
size_t block_unit_buffer_size = thread_count_ * 4 * 4 * C8NUM * sizeof(int16_t);
block_unit_buffer_ = reinterpret_cast<int16_t *>(malloc(block_unit_buffer_size));
if (block_unit_buffer_ == nullptr) {
@@ -124,6 +126,7 @@ int Convolution3x3Int8CPUKernel::InitTmpBuffer() {
}
memset(block_unit_buffer_, 0, block_unit_buffer_size);

/*=============================tmp_dst_buffer_============================*/
size_t tmp_dst_buffer_size = thread_count_ * TILE_NUM * 16 * oc4 * C4NUM * sizeof(int32_t);
tmp_dst_buffer_ = reinterpret_cast<int32_t *>(malloc(tmp_dst_buffer_size));
if (tmp_dst_buffer_ == nullptr) {
@@ -132,6 +135,7 @@ int Convolution3x3Int8CPUKernel::InitTmpBuffer() {
}
memset(tmp_dst_buffer_, 0, tmp_dst_buffer_size);

/*=============================tmp_out_============================*/
size_t tmp_out_size = oc4 * C4NUM * output_batch * output_w * output_h * sizeof(uint8_t);
tmp_out_ = reinterpret_cast<int8_t *>(malloc(tmp_out_size));
if (tmp_out_ == nullptr) {
@@ -140,6 +144,7 @@ int Convolution3x3Int8CPUKernel::InitTmpBuffer() {
}
memset(tmp_out_, 0, tmp_out_size);

/*=============================input_data_============================*/
size_t c8_input_size = in_batch * input_h * input_w * ic8 * C8NUM * sizeof(int16_t);
input_data_ = reinterpret_cast<int16_t *>(malloc(c8_input_size));
if (input_data_ == nullptr) {
@@ -238,4 +243,3 @@ int Convolution3x3Int8CPUKernel::Run() {
return RET_OK;
}
} // namespace mindspore::kernel


+ 10
- 0
mindspore/lite/src/runtime/kernel/arm/int8/convolution_int8.cc View File

@@ -116,6 +116,7 @@ int ConvolutionInt8CPUKernel::InitTmpBuffer() {
int unit_size = plane_c4 * C4NUM * ic4 * C4NUM;
int packed_input_size = output_tile_count * tile_num_ * unit_size;

/*=============================packed_input_============================*/
packed_input_ = reinterpret_cast<int8_t *>(malloc(conv_param_->input_batch_ * packed_input_size));
if (packed_input_ == nullptr) {
MS_LOG(ERROR) << "malloc packed_input_ failed.";
@@ -123,6 +124,7 @@ int ConvolutionInt8CPUKernel::InitTmpBuffer() {
}
memset(packed_input_, 0, conv_param_->input_batch_ * packed_input_size);

/*=============================input_sum_============================*/
input_sum_ = reinterpret_cast<int32_t *>(malloc(tile_num_ * thread_count_ * sizeof(int32_t)));
if (input_sum_ == nullptr) {
MS_LOG(ERROR) << "malloc input_sum_ failed.";
@@ -130,6 +132,7 @@ int ConvolutionInt8CPUKernel::InitTmpBuffer() {
}
memset(input_sum_, 0, tile_num_ * thread_count_ * sizeof(int32_t));

/*=============================tmp_dst_============================*/
size_t tmp_dst_size = thread_count_ * tile_num_ * conv_param_->output_channel_ * sizeof(int32_t);
tmp_dst_ = reinterpret_cast<int32_t *>(malloc(tmp_dst_size));
if (tmp_dst_ == nullptr) {
@@ -138,12 +141,14 @@ int ConvolutionInt8CPUKernel::InitTmpBuffer() {
}
memset(tmp_dst_, 0, tmp_dst_size);

/*=============================tmp_out_============================*/
tmp_out_ = reinterpret_cast<int8_t *>(malloc(thread_count_ * tile_num_ * conv_param_->output_channel_));
if (tmp_out_ == nullptr) {
MS_LOG(ERROR) << "malloc tmp_out_ failed.";
return RET_ERROR;
}

/*=============================nhwc4_input_============================*/
size_t nhwc4_input_size = ic4 * C4NUM * conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_;
nhwc4_input_ = malloc(nhwc4_input_size);
if (nhwc4_input_ == nullptr) {
@@ -209,6 +214,7 @@ int ConvolutionInt8CPUKernel::InitTmpBufferOpt() {
int unit_size = kernel_plane * ic4 * C4NUM;
int packed_input_size = output_tile_count * tile_num_ * unit_size;

/*=============================packed_input_============================*/
packed_input_ = reinterpret_cast<int8_t *>(malloc(conv_param_->input_batch_ * packed_input_size));
if (packed_input_ == nullptr) {
MS_LOG(ERROR) << "malloc packed_input_ failed.";
@@ -216,6 +222,7 @@ int ConvolutionInt8CPUKernel::InitTmpBufferOpt() {
}
memset(packed_input_, 0, conv_param_->input_batch_ * packed_input_size);

/*=============================input_sum_============================*/
input_sum_ = reinterpret_cast<int32_t *>(malloc(tile_num_ * thread_count_ * sizeof(int32_t)));
if (input_sum_ == nullptr) {
MS_LOG(ERROR) << "malloc input_sum_ failed.";
@@ -223,6 +230,7 @@ int ConvolutionInt8CPUKernel::InitTmpBufferOpt() {
}
memset(input_sum_, 0, tile_num_ * thread_count_ * sizeof(int32_t));

/*=============================tmp_dst_============================*/
size_t tmp_dst_size = thread_count_ * tile_num_ * conv_param_->output_channel_ * sizeof(int32_t);
tmp_dst_ = reinterpret_cast<int32_t *>(malloc(tmp_dst_size));
if (tmp_dst_ == nullptr) {
@@ -231,12 +239,14 @@ int ConvolutionInt8CPUKernel::InitTmpBufferOpt() {
}
memset(tmp_dst_, 0, tmp_dst_size);

/*=============================tmp_out_============================*/
tmp_out_ = reinterpret_cast<int8_t *>(malloc(thread_count_ * tile_num_ * conv_param_->output_channel_));
if (tmp_out_ == nullptr) {
MS_LOG(ERROR) << "malloc tmp_out_ failed.";
return RET_ERROR;
}

/*=============================nhwc4_input_============================*/
size_t nhwc4_input_size = ic4 * C4NUM * conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_;
nhwc4_input_ = malloc(nhwc4_input_size);
if (nhwc4_input_ == nullptr) {


+ 20
- 9
mindspore/lite/src/runtime/kernel/arm/opclib/fp16/conv_fp16.cc View File

@@ -54,7 +54,13 @@ void IndirectGemmFp16_16x8(float16_t *output, float16_t *input, float16_t *weigh
}
}

(output + out_tile_offset)[0] = tmp_out;
(output + out_tile_offset)[0] = tmp_out + bias[i];
if (relu) {
(output + out_tile_offset)[0] = (output + out_tile_offset)[0] < 0 ? 0 : (output + out_tile_offset)[0];
} else if (relu6) {
(output + out_tile_offset)[0] = (output + out_tile_offset)[0] < 0 ? 0 : (output + out_tile_offset)[0];
(output + out_tile_offset)[0] = (output + out_tile_offset)[0] > 6 ? 6 : (output + out_tile_offset)[0];
}
}
}
}
@@ -111,7 +117,8 @@ void ConvFp16(float16_t *input_data, float16_t *packed_input, float16_t *packed_
int out_h = conv_param->output_h_;
int out_w = conv_param->output_w_;
int out_channel = conv_param->output_channel_;

bool relu = conv_param->is_relu_;
bool relu6 = conv_param->is_relu6_;
// todo
int thread_count = conv_param->thread_num_;
int tile_n = 16;
@@ -125,7 +132,6 @@ void ConvFp16(float16_t *input_data, float16_t *packed_input, float16_t *packed_

// we accumulate 4 channels per time for input blocks
int ic4 = UP_DIV(in_channel, C4NUM);
int oc8 = UP_DIV(in_channel, C8NUM);
int conv_depth = kernel_h * kernel_w;
// bytes from one output's i-th channel to the next output's i-th channel
// we write 32 bytes per st1 instruction, after which the pointer in register will step 32B forward
@@ -137,19 +143,18 @@ void ConvFp16(float16_t *input_data, float16_t *packed_input, float16_t *packed_
for (int thread_id = task_id; thread_id < output_tile_count; thread_id += thread_count) {
int start_index = thread_id * tile_n;
int real_cal_num = (output_count - start_index) < tile_n ? (output_count - start_index) : tile_n;
float16_t *gemm_input =
(float16_t *)(packed_input + thread_id * unit_size * tile_n + gemm_in_batch_offset);
float16_t *gemm_input = (float16_t *)(packed_input + thread_id * unit_size * tile_n + gemm_in_batch_offset);
Im2ColPackUnitFp16(input_data + in_batch_offset, conv_param, gemm_input, real_cal_num, start_index);

int out_offset = thread_id * tile_n * out_channel + out_batch_offset;
if (real_cal_num == tile_n) {
float16_t *gemm_output = output_data + out_offset;
IndirectGemmFp16_16x8(gemm_output, gemm_input, packed_weight, bias_data, conv_depth, ic4, out_channel,
oc8 * C8NUM * sizeof(float16_t), 0, 0, 0, 0);
out_channel * sizeof(float16_t), 0, 0, relu, relu6);
} else {
// res part
IndirectGemmFp16_16x8(tmp_out_block, gemm_input, packed_weight, bias_data, conv_depth, ic4, out_channel,
oc8 * C8NUM * sizeof(float16_t), 0, 0, 0, 0);
out_channel * sizeof(float16_t), 0, 0, relu, relu6);
memcpy(output_data + out_offset, tmp_out_block, real_cal_num * out_channel * sizeof(float16_t));
}
}
@@ -196,6 +201,8 @@ void Conv3x3Fp16(float16_t *input_data, float16_t *transed_weight, const float16

// get real output
// todo
bool relu = conv_param->is_relu_;
bool relu6 = conv_param->is_relu6_;
for (int batch = 0; batch < output_batch; batch++) {
int batch_size = batch * output_channel * output_h * output_w;
for (int h = 0; h < output_h; h++) {
@@ -207,10 +214,14 @@ void Conv3x3Fp16(float16_t *input_data, float16_t *transed_weight, const float16
C8NUM * (h * out_w_block * output_unit + w) + oc8_res;
int dst_offset = (h * output_w + w) * output_channel + c;
(output_data + dst_offset)[0] = (tmp_out + src_offset)[0];
if (relu) {
(output_data + dst_offset)[0] = (output_data + dst_offset)[0] < 0 ? 0 : (output_data + dst_offset)[0];
} else if (relu6) {
(output_data + dst_offset)[0] = (output_data + dst_offset)[0] < 0 ? 0 : (output_data + dst_offset)[0];
(output_data + dst_offset)[0] = (output_data + dst_offset)[0] > 6 ? 6 : (output_data + dst_offset)[0];
}
}
}
}
}
}



+ 4
- 0
mindspore/lite/src/runtime/kernel/arm/opclib/fp16/pack_fp16.cc View File

@@ -56,10 +56,14 @@ void Im2ColPackUnitFp16(float16_t *input_data, ConvParameter *conv_param, float1
for (int m = 0; m < channel_block; m++) {
int channel_block_stride = input_x_stride + m * C4NUM;
int channel_block_offset = input_plane_offset + m * 16 * C4NUM;
#ifdef ENABLE_ARM64
vst1_f16(packed_input + channel_block_offset, vld1_f16(input_data + channel_block_stride));
#else
(packed_input + channel_block_offset)[0] = (input_data + channel_block_stride)[0];
(packed_input + channel_block_offset)[1] = (input_data + channel_block_stride)[1];
(packed_input + channel_block_offset)[2] = (input_data + channel_block_stride)[2];
(packed_input + channel_block_offset)[3] = (input_data + channel_block_stride)[3];
#endif
} // channel_block loop
} // kernel_w loop
} // kernel_h loop


+ 24
- 19
mindspore/lite/src/runtime/kernel/arm/opclib/fp16/winograd_transform_fp16.cc View File

@@ -459,25 +459,30 @@ void Conv3x3Fp16OutputUnit(const float16_t *gemm_out, const float16_t *bias_data
float16x8_t t34 = vaddq_f16(vaddq_f16(vsubq_f16(s14, s24), vmulq_n_f16(vsubq_f16(s34, s44), 8)), s54);
float16x8_t t35 = vaddq_f16(vaddq_f16(vsubq_f16(s15, s25), vmulq_n_f16(vsubq_f16(s35, s45), 8)), s55);

float16x8_t d00 = vaddq_f16(vaddq_f16(vaddq_f16(t00, t01), vaddq_f16(t02, t03)), t04);
float16x8_t d01 = vaddq_f16(vsubq_f16(t01, t02), vmulq_n_f16(vsubq_f16(t03, t04), 2));
float16x8_t d02 = vaddq_f16(vaddq_f16(t01, t02), vmulq_n_f16(vaddq_f16(t03, t04), 4));
float16x8_t d03 = vaddq_f16(vaddq_f16(vsubq_f16(t01, t02), vmulq_n_f16(vsubq_f16(t03, t04), 8)), t05);

float16x8_t d10 = vaddq_f16(vaddq_f16(vaddq_f16(t10, t11), vaddq_f16(t12, t13)), t14);
float16x8_t d11 = vaddq_f16(vsubq_f16(t11, t12), vmulq_n_f16(vsubq_f16(t13, t14), 2));
float16x8_t d12 = vaddq_f16(vaddq_f16(t11, t12), vmulq_n_f16(vaddq_f16(t13, t14), 4));
float16x8_t d13 = vaddq_f16(vaddq_f16(vsubq_f16(t11, t12), vmulq_n_f16(vsubq_f16(t13, t14), 8)), t15);

float16x8_t d20 = vaddq_f16(vaddq_f16(vaddq_f16(t20, t21), vaddq_f16(t22, t23)), t24);
float16x8_t d21 = vaddq_f16(vsubq_f16(t21, t22), vmulq_n_f16(vsubq_f16(t23, t24), 2));
float16x8_t d22 = vaddq_f16(vaddq_f16(t21, t22), vmulq_n_f16(vaddq_f16(t23, t24), 4));
float16x8_t d23 = vaddq_f16(vaddq_f16(vsubq_f16(t21, t22), vmulq_n_f16(vsubq_f16(t23, t24), 8)), t25);

float16x8_t d30 = vaddq_f16(vaddq_f16(vaddq_f16(t30, t31), vaddq_f16(t32, t33)), t34);
float16x8_t d31 = vaddq_f16(vsubq_f16(t31, t32), vmulq_n_f16(vsubq_f16(t33, t34), 2));
float16x8_t d32 = vaddq_f16(vaddq_f16(t31, t32), vmulq_n_f16(vaddq_f16(t33, t34), 4));
float16x8_t d33 = vaddq_f16(vaddq_f16(vsubq_f16(t31, t32), vmulq_n_f16(vsubq_f16(t33, t34), 8)), t35);
float16x8_t bias_ptr = vld1q_f16(bias_data);
float16x8_t d00 = vaddq_f16(vaddq_f16(vaddq_f16(vaddq_f16(t00, t01), vaddq_f16(t02, t03)), t04), bias_ptr);
float16x8_t d01 = vaddq_f16(vaddq_f16(vsubq_f16(t01, t02), vmulq_n_f16(vsubq_f16(t03, t04), 2)), bias_ptr);
float16x8_t d02 = vaddq_f16(vaddq_f16(vaddq_f16(t01, t02), vmulq_n_f16(vaddq_f16(t03, t04), 4)), bias_ptr);
float16x8_t d03 =
vaddq_f16(vaddq_f16(vaddq_f16(vsubq_f16(t01, t02), vmulq_n_f16(vsubq_f16(t03, t04), 8)), t05), bias_ptr);

float16x8_t d10 = vaddq_f16(vaddq_f16(vaddq_f16(vaddq_f16(t10, t11), vaddq_f16(t12, t13)), t14), bias_ptr);
float16x8_t d11 = vaddq_f16(vaddq_f16(vsubq_f16(t11, t12), vmulq_n_f16(vsubq_f16(t13, t14), 2)), bias_ptr);
float16x8_t d12 = vaddq_f16(vaddq_f16(vaddq_f16(t11, t12), vmulq_n_f16(vaddq_f16(t13, t14), 4)), bias_ptr);
float16x8_t d13 =
vaddq_f16(vaddq_f16(vaddq_f16(vsubq_f16(t11, t12), vmulq_n_f16(vsubq_f16(t13, t14), 8)), t15), bias_ptr);

float16x8_t d20 = vaddq_f16(vaddq_f16(vaddq_f16(vaddq_f16(t20, t21), vaddq_f16(t22, t23)), t24), bias_ptr);
float16x8_t d21 = vaddq_f16(vaddq_f16(vsubq_f16(t21, t22), vmulq_n_f16(vsubq_f16(t23, t24), 2)), bias_ptr);
float16x8_t d22 = vaddq_f16(vaddq_f16(vaddq_f16(t21, t22), vmulq_n_f16(vaddq_f16(t23, t24), 4)), bias_ptr);
float16x8_t d23 =
vaddq_f16(vaddq_f16(vaddq_f16(vsubq_f16(t21, t22), vmulq_n_f16(vsubq_f16(t23, t24), 8)), t25), bias_ptr);

float16x8_t d30 = vaddq_f16(vaddq_f16(vaddq_f16(vaddq_f16(t30, t31), vaddq_f16(t32, t33)), t34), bias_ptr);
float16x8_t d31 = vaddq_f16(vaddq_f16(vsubq_f16(t31, t32), vmulq_n_f16(vsubq_f16(t33, t34), 2)), bias_ptr);
float16x8_t d32 = vaddq_f16(vaddq_f16(vaddq_f16(t31, t32), vmulq_n_f16(vaddq_f16(t33, t34), 4)), bias_ptr);
float16x8_t d33 =
vaddq_f16(vaddq_f16(vaddq_f16(vsubq_f16(t31, t32), vmulq_n_f16(vsubq_f16(t33, t34), 8)), t35), bias_ptr);

vst1q_f16(output_data, d00);
vst1q_f16(output_data + 8, d01);


+ 19
- 10
mindspore/lite/src/runtime/kernel/arm/opclib/fp32/conv.cc View File

@@ -103,6 +103,9 @@ void ConvWinogardFp32(float *input_data, float *trans_weight, const float *bias_
float *gemm_out = buffer_list[1];
float *tmp_out_data = buffer_list[2];
float *tmp_data = buffer_list[3];
int trans_input_offset = TILE_NUM * input_unit_square * ic4 * C4NUM;
int gemm_out_offset = TILE_NUM * input_unit_square * oc4 * C4NUM;
int tmp_data_offset = input_unit_square * C4NUM;
// step 1 : filter transform (pre-processed offline)
// step 2 : input transform (online)
for (int b = 0; b < in_batch; b++) {
@@ -110,15 +113,16 @@ void ConvWinogardFp32(float *input_data, float *trans_weight, const float *bias_
int out_tile_index = thread_id * TILE_NUM;
int cal_num = output_count - thread_id * TILE_NUM;
cal_num = cal_num > TILE_NUM ? TILE_NUM : cal_num;
WinogradInputTransform(input_data, trans_input, tmp_data, cal_num, out_tile_index, out_w_block, conv_param,
WinogradInputTransform(input_data, trans_input + task_id * trans_input_offset,
tmp_data + task_id * tmp_data_offset, cal_num, out_tile_index, out_w_block, conv_param,
input_trans_func);
// step 3 : gemm
gemm_func(gemm_out, trans_input, trans_weight, nullptr, input_unit_square, ic4, oc4 * C4NUM, output_offset, 1, 1,
0, 0);
gemm_func(gemm_out + task_id * gemm_out_offset, trans_input + task_id * trans_input_offset, trans_weight, nullptr,
input_unit_square, ic4, oc4 * C4NUM, output_offset, 1, 1, 0, 0);

// step 4 : output transform
WinogradOutputTransform(gemm_out, tmp_out_data, bias_data, cal_num, out_tile_index, out_w_block, conv_param,
output_trans_func);
WinogradOutputTransform(gemm_out + task_id * gemm_out_offset, tmp_out_data, bias_data, cal_num, out_tile_index,
out_w_block, conv_param, output_trans_func);
}
}
// get real output
@@ -191,20 +195,25 @@ void Conv3x3Fp32(float *input_data, float *transed_weight, const float *bias_dat
float *block_unit_buffer = buffer_list[1];
float *tmp_dst_buffer = buffer_list[2];
float *nc4hw4_out = buffer_list[3];
int tile_buffer_offset = TILE_NUM * input_unit_square * ic4 * C4NUM;
int block_unit_buffer_offset = input_unit_square * C4NUM;
int tmp_dst_buffer_offset = TILE_NUM * input_unit_square * oc4 * C4NUM;

int input_batch = conv_param->input_batch_;
for (int batch = 0; batch < input_batch; batch++) {
for (int thread_id = task_id; thread_id < output_tile_count; thread_id += thread_count) {
int start_index = thread_id * TILE_NUM;
int real_cal_num = (output_count - start_index) < TILE_NUM ? (output_count - start_index) : TILE_NUM;
Conv3x3Fp32InputTransform(input_data, tile_buffer, block_unit_buffer, start_index, real_cal_num, out_w_block,
conv_param);
Conv3x3Fp32InputTransform(input_data, tile_buffer + task_id * tile_buffer_offset,
block_unit_buffer + task_id * block_unit_buffer_offset, start_index, real_cal_num,
out_w_block, conv_param);

gemm_func(tmp_dst_buffer, tile_buffer, transed_weight, nullptr, input_unit_square, ic4, oc4 * C4NUM,
gemm_func(tmp_dst_buffer + task_id * tmp_dst_buffer_offset, tile_buffer + task_id * tile_buffer_offset,
transed_weight, nullptr, input_unit_square, ic4, oc4 * C4NUM,
oc4 * C4NUM * input_unit_square * sizeof(float), 1, 1, 0, 0);

Conv3x3Fp32OutputTransform(tmp_dst_buffer, nc4hw4_out, bias_data, start_index, real_cal_num, out_w_block,
conv_param);
Conv3x3Fp32OutputTransform(tmp_dst_buffer + task_id * tmp_dst_buffer_offset, nc4hw4_out, bias_data, start_index,
real_cal_num, out_w_block, conv_param);
}
PackNC4HW4ToNHWCFp32(nc4hw4_out, output_data, 1, conv_param->output_h_ * conv_param->output_w_, output_channel);
}


+ 10
- 4
mindspore/lite/src/runtime/kernel/arm/opclib/int8/pooling_int8.cc View File

@@ -31,8 +31,13 @@ void AvgPoolingInt8(const int8_t *input_ptr, int8_t *output_ptr, PoolingParamete
int output_h = pooling_param->output_h_;
int output_batch = pooling_param->output_batch_;
int out_plane = output_w * output_h;
int16_t out_min = INT8_MIN;
int16_t out_max = INT8_MAX;
float input_scale = pooling_param->quant_args_[0][0].scale_;
int input_zp = pooling_param->quant_args_[0][0].zp_;
float output_scale = pooling_param->quant_args_[1][0].scale_;
int output_zp = pooling_param->quant_args_[1][0].zp_;
double real_multiplier = input_scale / output_scale;
int8_t out_min = INT8_MIN;
int8_t out_max = INT8_MAX;

for (int batch = 0; batch < output_batch; batch++) {
int in_batch_offset = batch * in_h * in_w * channel;
@@ -60,9 +65,10 @@ void AvgPoolingInt8(const int8_t *input_ptr, int8_t *output_ptr, PoolingParamete
} // win_w loop
} // win_h loop
int16_t tmp_out = round((float)tmp_avg / (float)real_count);
int16_t real_out = tmp_out < out_min ? out_min : tmp_out;
tmp_out = (int8_t)(round((tmp_out - input_zp) * real_multiplier) + output_zp);
int8_t real_out = tmp_out < out_min ? out_min : tmp_out;
real_out = real_out > out_max ? out_max : real_out;
*(output_ptr + out_channel_offset) = (int8_t)real_out;
*(output_ptr + out_channel_offset) = real_out;
} // in_channel loop
} // out_plane loop
} // out_batch loop


Loading…
Cancel
Save