| @@ -67,7 +67,7 @@ std::string RealPath(const char *path) { | |||
| MS_LOG(ERROR) << "path is too long"; | |||
| return ""; | |||
| } | |||
| std::shared_ptr<char> resolvedPath(new (std::nothrow) char[PATH_MAX]{0}); | |||
| auto resolvedPath = std::make_unique<char[]>(PATH_MAX); | |||
| if (resolvedPath == nullptr) { | |||
| MS_LOG(ERROR) << "new resolvedPath failed"; | |||
| return ""; | |||
| @@ -26,7 +26,15 @@ namespace mindspore::lite { | |||
| Model *Model::Import(const char *model_buf, size_t size) { | |||
| auto model = new Model(); | |||
| if (model_buf == nullptr) { | |||
| MS_LOG(ERROR) << "model buf is null"; | |||
| return nullptr; | |||
| } | |||
| model->model_impl_ = ModelImpl::Import(model_buf, size); | |||
| if (model->model_impl_ == nullptr) { | |||
| MS_LOG(ERROR) << "model impl is null"; | |||
| return nullptr; | |||
| } | |||
| return model; | |||
| } | |||
| @@ -21,7 +21,10 @@ | |||
| namespace mindspore::lite { | |||
| ModelImpl *ModelImpl::Import(const char *model_buf, size_t size) { | |||
| MS_EXCEPTION_IF_NULL(model_buf); | |||
| if (model_buf == nullptr) { | |||
| MS_LOG(ERROR) << "The model buf is nullptr"; | |||
| return nullptr; | |||
| } | |||
| flatbuffers::Verifier verify((const uint8_t *)model_buf, size); | |||
| if (!schema::VerifyMetaGraphBuffer(verify)) { | |||
| MS_LOG(ERROR) << "The buffer is invalid and fail to create graph."; | |||
| @@ -153,6 +153,9 @@ void Converter::CreateQuantizer(FuncGraphPtr funcGraph, const converter::Flags * | |||
| int RunConverter(int argc, const char **argv) { | |||
| auto flags = new converter::Flags; | |||
| auto status = flags->Init(argc, argv); | |||
| if (status == RET_SUCCESS_EXIT) { | |||
| return 0; | |||
| } | |||
| if (status != 0) { | |||
| MS_LOG(ERROR) << "converter::Flags Init failed: " << status; | |||
| return 1; | |||
| @@ -14,7 +14,6 @@ | |||
| * limitations under the License. | |||
| */ | |||
| #include <regex> | |||
| #include <string> | |||
| #include "tools/converter/converter_flags.h" | |||
| @@ -43,31 +42,31 @@ int Flags::Init(int argc, const char **argv) { | |||
| Option<std::string> err = this->ParseFlags(argc, argv); | |||
| if (err.IsSome()) { | |||
| MS_LOG(ERROR) << err.Get(); | |||
| std::cerr << err.Get(); | |||
| std::cerr << this->Usage() << std::endl; | |||
| return 1; | |||
| } | |||
| if (this->help) { | |||
| std::cerr << this->Usage() << std::endl; | |||
| return 0; | |||
| std::cout << this->Usage() << std::endl; | |||
| return RET_SUCCESS_EXIT; | |||
| } | |||
| if (this->modelFile.empty()) { | |||
| MS_LOG(ERROR) << "INPUT MISSING: model file path is necessary"; | |||
| std::cerr << "INPUT MISSING: model file path is necessary"; | |||
| return 1; | |||
| } | |||
| if (this->outputFile.empty()) { | |||
| MS_LOG(ERROR) << "INPUT MISSING: output file path is necessary"; | |||
| std::cerr << "INPUT MISSING: output file path is necessary"; | |||
| return 1; | |||
| } | |||
| if (this->outputFile.rfind('/') == this->outputFile.length() - 1) { | |||
| MS_LOG(ERROR) << "INPUT ILLEGAL: outputFile must be a valid file path"; | |||
| std::cerr << "INPUT ILLEGAL: outputFile must be a valid file path"; | |||
| return 1; | |||
| } | |||
| if (this->fmkIn.empty()) { | |||
| MS_LOG(ERROR) << "INPUT MISSING: fmk is necessary"; | |||
| std::cerr << "INPUT MISSING: fmk is necessary"; | |||
| return 1; | |||
| } | |||
| if (this->inputInferenceTypeIn == "FLOAT") { | |||
| @@ -75,7 +74,7 @@ int Flags::Init(int argc, const char **argv) { | |||
| } else if (this->inputInferenceTypeIn == "UINT8") { | |||
| this->inputInferenceType = 1; | |||
| } else { | |||
| MS_LOG(ERROR) << "INPUT INVALID: inputInferenceType is invalid: %s", this->inputInferenceTypeIn.c_str(); | |||
| std::cerr << "INPUT INVALID: inputInferenceType is invalid: %s", this->inputInferenceTypeIn.c_str(); | |||
| return 1; | |||
| } | |||
| if (this->fmkIn == "CAFFE") { | |||
| @@ -85,12 +84,12 @@ int Flags::Init(int argc, const char **argv) { | |||
| } else if (this->fmkIn == "TFLITE") { | |||
| this->fmk = FmkType_TFLITE; | |||
| } else { | |||
| MS_LOG(ERROR) << "INPUT ILLEGAL: fmk must be TFLITE|CAFFE|MS"; | |||
| std::cerr << "INPUT ILLEGAL: fmk must be TFLITE|CAFFE|MS"; | |||
| return 1; | |||
| } | |||
| if (this->fmk != FmkType_CAFFE && !weightFile.empty()) { | |||
| MS_LOG(ERROR) << "INPUT ILLEGAL: weightFile is not a valid flag"; | |||
| std::cerr << "INPUT ILLEGAL: weightFile is not a valid flag"; | |||
| return 1; | |||
| } | |||
| if (this->quantTypeIn == "AwareTrainning") { | |||
| @@ -102,7 +101,7 @@ int Flags::Init(int argc, const char **argv) { | |||
| } else if (this->quantTypeIn.empty()) { | |||
| this->quantType = QuantType_QUANT_NONE; | |||
| } else { | |||
| MS_LOG(ERROR) << "INPUT ILLEGAL: quantType must be AwareTrainning|WeightQuant|PostTraining"; | |||
| std::cerr << "INPUT ILLEGAL: quantType must be AwareTrainning|WeightQuant|PostTraining"; | |||
| return 1; | |||
| } | |||
| @@ -71,7 +71,7 @@ int TimeProfile::ReadInputFile() { | |||
| } | |||
| auto tensor_data_size = inTensor->Size(); | |||
| if (size != tensor_data_size) { | |||
| MS_LOG(ERROR) << "Input binary file size error, required: " << tensor_data_size << " in fact: %zu" << size; | |||
| MS_LOG(ERROR) << "Input binary file size error, required: " << tensor_data_size << " in fact: " << size; | |||
| return RET_ERROR; | |||
| } | |||
| auto input_data = inTensor->MutableData(); | |||
| @@ -90,7 +90,7 @@ int TimeProfile::LoadInput() { | |||
| } else { | |||
| auto status = ReadInputFile(); | |||
| if (status != RET_OK) { | |||
| MS_LOG(ERROR) << "ReadInputFile error, " << status; | |||
| MS_LOG(ERROR) << "ReadInputFile error " << status; | |||
| return RET_ERROR; | |||
| } | |||
| } | |||
| @@ -149,10 +149,10 @@ int TimeProfile::InitCallbackParameter() { | |||
| uint64_t opEnd = GetTimeUs(); | |||
| if (after_inputs.empty()) { | |||
| MS_LOG(INFO) << "The num of beforeInputs is empty"; | |||
| MS_LOG(INFO) << "The num of after inputs is empty"; | |||
| } | |||
| if (after_outputs.empty()) { | |||
| MS_LOG(INFO) << "The num of beforeOutputs is empty"; | |||
| MS_LOG(INFO) << "The num of after outputs is empty"; | |||
| } | |||
| float cost = static_cast<float>(opEnd - op_begin_) / 1000.0f; | |||
| @@ -297,22 +297,34 @@ int TimeProfile::RunTimeProfile() { | |||
| size_t size = 0; | |||
| char *graphBuf = ReadFile(_flags->model_path_.c_str(), &size); | |||
| if (graphBuf == nullptr) { | |||
| MS_LOG(ERROR) << "Load graph failed while running %s", modelName.c_str(); | |||
| MS_LOG(ERROR) << "Load graph failed while running " << modelName.c_str(); | |||
| delete graphBuf; | |||
| delete session_; | |||
| return RET_ERROR; | |||
| } | |||
| auto model = lite::Model::Import(graphBuf, size); | |||
| delete graphBuf; | |||
| if (model == nullptr) { | |||
| MS_LOG(ERROR) << "Import model file failed while running " << modelName.c_str(); | |||
| delete session_; | |||
| delete model; | |||
| return RET_ERROR; | |||
| } | |||
| auto ret = session_->CompileGraph(model); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "Compile graph failed."; | |||
| delete session_; | |||
| delete model; | |||
| return RET_ERROR; | |||
| } | |||
| // load input | |||
| MS_LOG(INFO) << "start generate input data"; | |||
| auto status = LoadInput(); | |||
| if (status != 0) { | |||
| if (status != RET_OK) { | |||
| MS_LOG(ERROR) << "Generate input data error"; | |||
| delete session_; | |||
| delete model; | |||
| return status; | |||
| } | |||
| @@ -324,6 +336,8 @@ int TimeProfile::RunTimeProfile() { | |||
| ret = session_->RunGraph(before_call_back_, after_call_back_); | |||
| if (ret != RET_OK) { | |||
| MS_LOG(ERROR) << "Run graph failed."; | |||
| delete session_; | |||
| delete model; | |||
| return RET_ERROR; | |||
| } | |||
| auto outputs = session_->GetOutputs(); | |||
| @@ -345,14 +359,8 @@ int TimeProfile::RunTimeProfile() { | |||
| printf("\n total time: %5.5f ms, kernel cost: %5.5f ms \n\n", runCost, op_cost_total_ / _flags->loop_count_); | |||
| printf("-------------------------------------------------------------------------\n"); | |||
| for (auto &msInput : ms_inputs_) { | |||
| delete msInput; | |||
| } | |||
| ms_inputs_.clear(); | |||
| delete graphBuf; | |||
| delete session_; | |||
| delete model; | |||
| delete session_; | |||
| return ret; | |||
| } | |||