| @@ -26,6 +26,7 @@ | |||
| #include "backend/kernel_compiler/common_utils.h" | |||
| #include "backend/kernel_compiler/kernel_build_info.h" | |||
| #include "backend/optimizer/graph_kernel/graph_kernel_helper.h" | |||
| #include "backend/optimizer/graph_kernel/split_umonad.h" | |||
| #include "backend/optimizer/graph_kernel/substitute_dropout.h" | |||
| #include "backend/session/anf_runtime_algorithm.h" | |||
| #include "mindspore/core/ir/graph_utils.h" | |||
| @@ -37,10 +38,14 @@ | |||
| namespace mindspore { | |||
| namespace opt { | |||
| namespace { | |||
| constexpr size_t kAssignInputIdx = 1; | |||
| constexpr size_t kLambInputIdx = 12; | |||
| std::vector<PrimitivePtr> GetExpandOps() { | |||
| std::vector<PrimitivePtr> expand_ops = { | |||
| prim::kPrimSquare, | |||
| prim::kPrimGeLUGrad, | |||
| prim::kPrimAssignAdd, | |||
| #if ENABLE_D | |||
| prim::kPrimTile, | |||
| prim::kPrimSqrtGrad, | |||
| @@ -69,7 +74,6 @@ std::vector<PrimitivePtr> GetExpandOps() { | |||
| prim::kPrimSigmoidCrossEntropyWithLogits, | |||
| prim::kPrimSigmoidCrossEntropyWithLogitsGrad, | |||
| prim::kPrimSoftmaxCrossEntropyWithLogits, | |||
| prim::kPrimAssignAdd, | |||
| #endif | |||
| }; | |||
| const auto &flags = context::GraphKernelFlags::GetInstance(); | |||
| @@ -167,6 +171,22 @@ AnfNodePtr DefaultExpander::Run(const AnfNodePtr &node) { | |||
| return graph_kernel_node; | |||
| } | |||
| ExpanderPtr GraphKernelExpander::GetExpander(const AnfNodePtr &node) { | |||
| std::vector<std::pair<PrimitivePtr, ExpanderPtr>> expanders = { | |||
| {prim::kPrimDropout, std::make_shared<DropoutExpander>()}, | |||
| {prim::kPrimAssignAdd, std::make_shared<OpUMonadExpander>(kAssignInputIdx)}, | |||
| {prim::kPrimAssignSub, std::make_shared<OpUMonadExpander>(kAssignInputIdx)}, | |||
| {prim::kLambApplyOptimizerAssign, std::make_shared<OpUMonadExpander>(kLambInputIdx)}, | |||
| }; | |||
| for (auto &e : expanders) { | |||
| if (IsPrimitiveCNode(node, e.first)) { | |||
| return e.second; | |||
| } | |||
| } | |||
| return std::make_shared<DefaultExpander>(); | |||
| } | |||
| bool GraphKernelExpander::DoExpand(const FuncGraphPtr &func_graph) { | |||
| bool changed = false; | |||
| auto todos = TopoSort(func_graph->get_return()); | |||
| @@ -192,18 +212,6 @@ bool GraphKernelExpander::DoExpand(const FuncGraphPtr &func_graph) { | |||
| return changed; | |||
| } | |||
| ExpanderPtr GraphKernelExpander::GetExpander(const AnfNodePtr &node) { | |||
| std::vector<std::pair<PrimitivePtr, ExpanderPtr>> expanders = { | |||
| {prim::kPrimDropout, std::make_shared<DropoutExpander>()}, | |||
| }; | |||
| for (auto &e : expanders) { | |||
| if (IsPrimitiveCNode(node, e.first)) { | |||
| return e.second; | |||
| } | |||
| } | |||
| return std::make_shared<DefaultExpander>(); | |||
| } | |||
| bool GraphKernelExpander::Run(const FuncGraphPtr &func_graph) { | |||
| expand_ops_ = GetExpandOps(); | |||
| return DoExpand(func_graph); | |||
| @@ -37,7 +37,7 @@ | |||
| #include "backend/optimizer/graph_kernel/value_graph_binder.h" | |||
| #include "backend/optimizer/graph_kernel/parallel_fusion.h" | |||
| #include "backend/optimizer/graph_kernel/optimize_assign.h" | |||
| #include "backend/optimizer/graph_kernel/split_assign.h" | |||
| #include "backend/optimizer/graph_kernel/split_umonad.h" | |||
| #include "backend/optimizer/graph_kernel/reorder_ops.h" | |||
| #include "backend/optimizer/graph_kernel/update_state_formatter.h" | |||
| #include "backend/optimizer/graph_kernel/axis_normalizer.h" | |||
| @@ -13,7 +13,7 @@ | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "backend/optimizer/graph_kernel/split_assign.h" | |||
| #include "backend/optimizer/graph_kernel/split_umonad.h" | |||
| #include <vector> | |||
| #include <string> | |||
| @@ -35,31 +35,63 @@ const BaseRef SplitAssign::DefinePattern() const { | |||
| return VectorRef({v, Xs, Us, UMonad}); | |||
| } | |||
| bool CanSplit(const AnfNodePtr &node) { | |||
| return IsPrimitiveCNode(node, prim::kPrimAssignAdd) || IsPrimitiveCNode(node, prim::kPrimAssign) || | |||
| IsPrimitiveCNode(node, prim::kPrimAssignSub); | |||
| } | |||
| bool CanSplit(const AnfNodePtr &node) { return IsPrimitiveCNode(node, prim::kPrimAssign); } | |||
| const AnfNodePtr SplitAssign::Process(const FuncGraphPtr &func_graph, const AnfNodePtr &node, const EquivPtr &) const { | |||
| AnfNodePtr ProcessNode(const FuncGraphPtr &func_graph, const AnfNodePtr &node, int input_idx) { | |||
| MS_EXCEPTION_IF_NULL(node); | |||
| if (!CanSplit(node)) return node; | |||
| CNodePtr cnode = node->cast<CNodePtr>(); | |||
| MS_EXCEPTION_IF_NULL(cnode); | |||
| CheckCNodeInputSize(cnode, kAssignInputTensorNum); | |||
| // Get original assign op's abstract and inputs | |||
| // Get original op's abstract and inputs | |||
| AbstractBasePtr original_abstract = cnode->abstract()->Clone(); | |||
| auto original_inputs = cnode->inputs(); | |||
| int input_node_size = cnode->size() - 1; | |||
| // Create depend node | |||
| AnfNodePtrList depend_inputs = {NewValueNode(prim::kPrimDepend), original_inputs[1], original_inputs[3]}; | |||
| AnfNodePtrList depend_inputs = {NewValueNode(prim::kPrimDepend), original_inputs[input_idx], | |||
| original_inputs[input_node_size]}; | |||
| auto depend_cnode = func_graph->NewCNode(depend_inputs); | |||
| depend_cnode->set_abstract(original_inputs[1]->abstract()); | |||
| depend_cnode->set_abstract(original_inputs[input_idx]->abstract()); | |||
| depend_cnode->set_kernel_info(std::make_shared<device::KernelInfo>()); | |||
| // Create new assign node, delete U from inputs. | |||
| AnfNodePtrList new_assign_inputs = {cnode->input(0), depend_cnode, original_inputs[2]}; | |||
| auto new_assign_cnode = func_graph->NewCNode(new_assign_inputs); | |||
| new_assign_cnode->set_abstract(original_abstract); | |||
| new_assign_cnode->set_kernel_info(cnode->kernel_info_ptr()); | |||
| return new_assign_cnode; | |||
| // Create new node, delete U from inputs. | |||
| AnfNodePtrList new_inputs = {cnode->input(0)}; | |||
| for (int i = 1; i < input_node_size; i++) { | |||
| if (i == input_idx) { | |||
| new_inputs.push_back(depend_cnode); | |||
| } else { | |||
| new_inputs.push_back(cnode->input(i)); | |||
| } | |||
| } | |||
| auto new_cnode = func_graph->NewCNode(new_inputs); | |||
| new_cnode->set_abstract(original_abstract); | |||
| new_cnode->set_kernel_info(cnode->kernel_info_ptr()); | |||
| return new_cnode; | |||
| } | |||
| const AnfNodePtr SplitAssign::Process(const FuncGraphPtr &func_graph, const AnfNodePtr &node, const EquivPtr &) const { | |||
| MS_EXCEPTION_IF_NULL(node); | |||
| if (!CanSplit(node)) return node; | |||
| return ProcessNode(node->func_graph(), node, 1); | |||
| } | |||
| AnfNodePtr OpUMonadExpander::Run(const AnfNodePtr &node) { | |||
| auto cnode = node->cast<CNodePtr>(); | |||
| MS_EXCEPTION_IF_NULL(cnode); | |||
| bool has_umonad = false; | |||
| for (unsigned int i = 1; i < cnode->size(); i++) { | |||
| if (HasAbstractUMonad(cnode->input(i))) { | |||
| has_umonad = true; | |||
| break; | |||
| } | |||
| } | |||
| if (has_umonad) { | |||
| auto new_node = ProcessNode(node->func_graph(), node, input_idx_); | |||
| return DefaultExpander::Run(new_node); | |||
| } | |||
| return DefaultExpander::Run(node); | |||
| } | |||
| } // namespace opt | |||
| } // namespace mindspore | |||
| @@ -13,11 +13,11 @@ | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_SPLIT_ASSIGN_H_ | |||
| #define MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_SPLIT_ASSIGN_H_ | |||
| #ifndef MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_SPLIT_UMONAD_H_ | |||
| #define MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_SPLIT_UMONAD_H_ | |||
| #include "backend/optimizer/common/optimizer.h" | |||
| #include "backend/optimizer/graph_kernel/graph_kernel_expander.h" | |||
| namespace mindspore { | |||
| namespace opt { | |||
| class SplitAssign : public PatternProcessPass { | |||
| @@ -27,6 +27,16 @@ class SplitAssign : public PatternProcessPass { | |||
| const BaseRef DefinePattern() const override; | |||
| const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override; | |||
| }; | |||
| class OpUMonadExpander : public DefaultExpander { | |||
| public: | |||
| explicit OpUMonadExpander(int input_idx) : input_idx_(input_idx) {} | |||
| ~OpUMonadExpander() = default; | |||
| AnfNodePtr Run(const AnfNodePtr &node) override; | |||
| private: | |||
| int input_idx_; | |||
| }; | |||
| } // namespace opt | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_SPLIT_ASSIGN_H_ | |||
| #endif // MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_SPLIT_UMONAD_H_ | |||
| @@ -219,7 +219,9 @@ bool ExtendOutputForUpdateState::ProcessIndex(const FuncGraphPtr &func_graph, co | |||
| auto mng = func_graph->manager(); | |||
| MS_EXCEPTION_IF_NULL(mng); | |||
| for (auto user : mng->node_users()[getitems_[index]]) { | |||
| user.first->cast<CNodePtr>()->set_input(user.second, new_node); | |||
| if (IsPrimitiveCNode(user.first, prim::kPrimUpdateState)) { | |||
| user.first->cast<CNodePtr>()->set_input(user.second, new_node); | |||
| } | |||
| } | |||
| return true; | |||
| } | |||
| @@ -32,26 +32,38 @@ class AssignAdd(nn.Cell): | |||
| self.add(self.var, y) | |||
| return self.var | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_assign_add(): | |||
| x2 = Tensor(np.arange(1 * 3 * 3 * 3).reshape(1, 3, 3, 3).astype(np.float32)) | |||
| y2 = Tensor(np.arange(1 * 3 * 3 * 3).reshape(1, 3, 3, 3).astype(np.float32)) | |||
| context.set_context(mode=context.GRAPH_MODE, | |||
| enable_graph_kernel=True, device_target="GPU") | |||
| def get_output(x2, y2, enable_graph_kernel=False): | |||
| context.set_context(enable_graph_kernel=enable_graph_kernel) | |||
| add = AssignAdd(x2) | |||
| result_gk_on_1 = add(y2) | |||
| add_2 = AssignAdd(result_gk_on_1) | |||
| result_gk_on_2 = add_2(y2) | |||
| output = [result_gk_on_1, result_gk_on_2] | |||
| return output | |||
| def assign_add(): | |||
| x2 = Tensor(np.arange(1 * 3 * 3 * 3).reshape(1, 3, 3, 3).astype(np.float32)) | |||
| y2 = Tensor(np.arange(1 * 3 * 3 * 3).reshape(1, 3, 3, 3).astype(np.float32)) | |||
| expect = get_output(x2, y2, False) | |||
| output = get_output(x2, y2, True) | |||
| e1, e2 = list(expect) | |||
| o1, o2 = list(output) | |||
| assert np.allclose(o1.asnumpy(), e1.asnumpy()) | |||
| assert np.allclose(o2.asnumpy(), e2.asnumpy()) | |||
| context.set_context(mode=context.GRAPH_MODE, | |||
| enable_graph_kernel=False, device_target="GPU") | |||
| add_beta = AssignAdd(x2) | |||
| result_gk_off_1 = add_beta(y2) | |||
| add_beta_2 = AssignAdd(result_gk_off_1) | |||
| result_gk_off_2 = add_beta_2(y2) | |||
| assert (result_gk_on_1.asnumpy() == result_gk_off_1.asnumpy()).all() | |||
| assert (result_gk_on_2.asnumpy() == result_gk_off_2.asnumpy()).all() | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_assign_add_gpu(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| assign_add() | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_assign_add_ascend(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| assign_add() | |||
| @@ -14,6 +14,7 @@ | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| @@ -67,6 +68,10 @@ def lamb_apply_optimizer_assign(): | |||
| assert np.allclose(o2.asnumpy(), e2.asnumpy()) | |||
| assert np.allclose(o3.asnumpy(), e3.asnumpy()) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_lamb_apply_optimizer_assign_ascend(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| lamb_apply_optimizer_assign() | |||