Browse Source

!7976 [pynative] Add nested derivative feature

Merge pull request !7976 from zjun/Add_nested_derivative
tags/v1.1.0
mindspore-ci-bot Gitee 5 years ago
parent
commit
00294473e3
6 changed files with 1020 additions and 910 deletions
  1. +920
    -839
      mindspore/ccsrc/pipeline/pynative/pynative_execute.cc
  2. +91
    -69
      mindspore/ccsrc/pipeline/pynative/pynative_execute.h
  3. +3
    -0
      mindspore/common/api.py
  4. +2
    -1
      mindspore/nn/cell.py
  5. +3
    -0
      mindspore/ops/composite/base.py
  6. +1
    -1
      tests/ut/python/pynative_mode/test_stop_gradient.py

+ 920
- 839
mindspore/ccsrc/pipeline/pynative/pynative_execute.cc
File diff suppressed because it is too large
View File


+ 91
- 69
mindspore/ccsrc/pipeline/pynative/pynative_execute.h View File

@@ -22,6 +22,7 @@
#include <string> #include <string>
#include <memory> #include <memory>
#include <unordered_map> #include <unordered_map>
#include <unordered_set>
#include <mutex> #include <mutex>
#include <stack> #include <stack>
#include <set> #include <set>
@@ -61,113 +62,134 @@ void ConvertInputs(const PrimitivePyPtr &prim, const py::list &py_args, py::tupl
void ClearPyNativeSession(); void ClearPyNativeSession();


struct GraphInfo { struct GraphInfo {
std::unordered_map<std::string, std::pair<AnfNodePtr, std::vector<int>>> param_map;
std::unordered_map<std::string, std::pair<AnfNodePtr, std::vector<int>>> obj_node_map;
std::unordered_set<std::string> params; // hold inpout parameters and cell weigths
std::unordered_map<std::string, std::pair<AnfNodePtr, std::vector<int>>> node_map;
AnfNodePtr output; AnfNodePtr output;
std::vector<std::string> objects; std::vector<std::string> objects;
}; };


class PynativeExecutor : public std::enable_shared_from_this<PynativeExecutor> { class PynativeExecutor : public std::enable_shared_from_this<PynativeExecutor> {
private:
MsBackendPolicy InitEnv(const OpExecInfoPtr &op_exec_info);
py::tuple RunOpWithInitBackendPolicy(const OpExecInfoPtr &op_exec_info);
AnfNodePtr MakeCNode(const OpExecInfoPtr &op_exec_info, std::vector<bool> *op_masks,
abstract::AbstractBasePtrList *args_spec_list);
void RunParameterAutoMixPrecisionCast(const OpExecInfoPtr &op_exec_info);

public: public:
static std::shared_ptr<PynativeExecutor> GetInstance() { static std::shared_ptr<PynativeExecutor> GetInstance() {
std::lock_guard<std::mutex> i_lock(instance_lock_); std::lock_guard<std::mutex> i_lock(instance_lock_);
if (executor_ == nullptr) { if (executor_ == nullptr) {
executor_ = std::shared_ptr<PynativeExecutor>(new (std::nothrow) PynativeExecutor()); executor_ = std::shared_ptr<PynativeExecutor>(new (std::nothrow) PynativeExecutor());
resource_ = std::make_shared<pipeline::Resource>();
} }
return executor_; return executor_;
} }
~PynativeExecutor();

bool grad_flag() { return grad_flag_; }
void set_grad_flag(bool flag) { grad_flag_ = flag; }

py::tuple RunOpInner(const py::args &args);
void NewGraph(const py::object &cell, const py::args &args); void NewGraph(const py::object &cell, const py::args &args);
void NewGraphInner(const py::object &cell, const py::args &args);
py::object Run(const py::tuple &args, const py::object &phase);
py::object CheckGraph(const py::object &cell, const py::args &args);
void EndGraph(const py::object &cell, const py::object &out, const py::args &args); void EndGraph(const py::object &cell, const py::object &out, const py::args &args);
void EndGraphInner(const py::object &cell, const py::object &out, const py::args &args);
void EndGraphByOutId(const std::string &out_id, const py::object &cell, const py::object &out, const py::args &args);
std::vector<AnfNodePtr> GetWeightsArgs(const py::object &weights);
abstract::AbstractBasePtrList GetArgsSpec(const py::args &args);
void GradNet(const GradOperationPtr &grad, const py::object &cell, const py::object &weights, const py::args &args); void GradNet(const GradOperationPtr &grad, const py::object &cell, const py::object &weights, const py::args &args);
void GradNetInner(const GradOperationPtr &grad, const py::object &cell, const py::object &weights,
const py::args &args);
void SaveOpForwardValue(const std::string &id, const ValuePtr &value,
std::map<std::string, tensor::TensorPtr> *t_map);

// Call by python
void Clear(const std::string &flag = ""); void Clear(const std::string &flag = "");
// Abnormal existed
void Clean(); void Clean();
// Destrcut call
void ClearRes(); void ClearRes();
bool grad_flag() { return grad_flag_; }
void set_grad_flag(bool flag) { grad_flag_ = flag; }

private:
PynativeExecutor() = default;
PynativeExecutor(const PynativeExecutor &) = delete;
PynativeExecutor &operator=(const PynativeExecutor &) = delete;

// run op
AnfNodePtr GetInput(const py::object &obj, bool op_mask); AnfNodePtr GetInput(const py::object &obj, bool op_mask);
AnfNodePtr GetObjNode(const py::object &obj);
AnfNodePtr GetParamNode(const py::object &obj);
std::string GetCellId(const py::object &obj, const py::args &args);
FuncGraphPtr curr_g() { return curr_g_; }
void set_pyobj(FuncGraphPtr g, const std::string obj) { graph_info_map_[g].objects.push_back(obj); }
void set_obj_node_map(FuncGraphPtr g, const std::string obj, AnfNodePtr node) {
graph_info_map_[g].obj_node_map[obj] = std::make_pair(node, std::vector<int>{-1});
}
void set_obj_node_map(FuncGraphPtr g, const std::string obj, AnfNodePtr node, int index) {
graph_info_map_[g].obj_node_map[obj] = std::make_pair(node, std::vector<int>{index});
}
void set_obj_node_map(FuncGraphPtr g, const std::string obj, AnfNodePtr node, std::vector<int> index) {
graph_info_map_[g].obj_node_map[obj] = std::make_pair(node, index);
}
MsBackendPolicy InitEnv(const OpExecInfoPtr &op_exec_info);
py::tuple RunOpWithInitBackendPolicy(const OpExecInfoPtr &op_exec_info);
void RunParameterAutoMixPrecisionCast(const OpExecInfoPtr &op_exec_info);
py::object RunOpInMs(const OpExecInfoPtr &op_exec_info, PynativeStatusCode *status);
py::object RunOpWithBackendPolicy(MsBackendPolicy backend_policy, const OpExecInfoPtr &op_exec_info,
PynativeStatusCode *const status);
AnfNodePtr GetObjNode(const py::object &obj, const std::string &obj_id);
AnfNodePtr MakeValueNode(const py::object &obj, const std::string &obj_id);
AnfNodePtr MakeCNode(const OpExecInfoPtr &op_exec_info, std::vector<bool> *op_masks,
abstract::AbstractBasePtrList *args_spec_list);
void SaveOutputNodeMap(const std::string &obj_id, const py::object &out_real, const AnfNodePtr &cnode);


void set_param_map(FuncGraphPtr g, const std::string obj, AnfNodePtr node) {
graph_info_map_[g].param_map[obj] = std::make_pair(node, std::vector<int>{-1});
}
void set_param_map(FuncGraphPtr g, const std::string obj, AnfNodePtr node, int index) {
graph_info_map_[g].param_map[obj] = std::make_pair(node, std::vector<int>{index});
}
void set_param_map(FuncGraphPtr g, const std::string obj, AnfNodePtr node, std::vector<int> index) {
graph_info_map_[g].param_map[obj] = std::make_pair(node, index);
}
void MakeCNode(const OpExecInfoPtr &op_exec_info, const py::object &out, const AnfNodePtr &cnode);
// replace for grad graph
ValuePtr CleanTupleAddr(const ValueTuplePtr &tuple);
ValuePtr GetForwardValue(const OpExecInfoPtr &op_exec_info); ValuePtr GetForwardValue(const OpExecInfoPtr &op_exec_info);
void SaveOpForwardValue(const std::string &id, const ValuePtr &value,
std::map<std::string, tensor::TensorPtr> *t_map);
void SaveForwardResult(const CNodePtr &cnode, const py::object &out); void SaveForwardResult(const CNodePtr &cnode, const py::object &out);
void GenTupleMap(const ValueTuplePtr &tuple, std::map<std::string, tensor::TensorPtr> *t_map);
void SaveAllResult(const OpExecInfoPtr &op_exec_info, const CNodePtr &cnode, const py::tuple &out); void SaveAllResult(const OpExecInfoPtr &op_exec_info, const CNodePtr &cnode, const py::tuple &out);


py::object Run(const py::tuple &args, const py::object &phase);

// construct grad graph
void Pushp(); void Pushp();
void Popp(); void Popp();
FuncGraphPtr GradGraph(FuncGraphPtr g, const GradOperationPtr &grad_op, const std::vector<AnfNodePtr> &weights,
size_t arg_size);
void SetTupleOutput(const py::object &obj, const AnfNodePtr &cnode, std::vector<int> idx);
void SetTupleParam(const py::object &obj, const AnfNodePtr &para_node, std::vector<int> idx);
AnfNodePtr MakeValueNode(const py::object &obj, const std::string &obj_id);
py::tuple RunOpInner(const py::args &args);
void NewGraphInner(const py::object &cell, const py::args &args);
void MakeNewTopGraph(const string &cell_id, const py::args &args, const FuncGraphPtr &g);
void EndGraphInner(const py::object &cell, const py::object &out, const py::args &args);
void EndGraphByOutId(const std::string &out_id, const py::object &cell, const py::object &out, const py::args &args);
FuncGraphPtr MakeGradGraph(const py::object &cell, const py::args &args);
void GradNetInner(const GradOperationPtr &grad, const py::object &cell, const py::object &weights,
const py::args &args);
std::string GetCellId(const py::object &obj, const py::args &args);
std::string CheckCellChanged(const GradOperationPtr &grad, const py::object &cell, const py::object &weights,
const py::args &args, std::pair<bool, bool> *sens_weights_changed);
void SetGradGraphParams(size_t size, const std::string &cell_id, const std::pair<bool, bool> &sens_weights_changed);
void GradGraph(FuncGraphPtr g, const GradOperationPtr &grad_op, const std::vector<AnfNodePtr> &weights,
size_t arg_size);
std::vector<AnfNodePtr> GetWeightsArgs(const py::object &weights);
abstract::AbstractBasePtrList GetArgsSpec(const py::args &args);


~PynativeExecutor();
// hold graph(forward and grad) info
void set_pyobj(FuncGraphPtr g, const std::string obj) { graph_info_map_[g].objects.push_back(obj); }
void set_node_map(const FuncGraphPtr &g, const py::object &node, const AnfNodePtr &cnode, bool is_param = false);
void set_node_map(FuncGraphPtr g, const std::string obj, AnfNodePtr node) {
graph_info_map_[g].node_map[obj] = std::make_pair(node, std::vector<int>{-1});
}
void set_node_map(FuncGraphPtr g, const std::string obj, AnfNodePtr node, int index) {
graph_info_map_[g].node_map[obj] = std::make_pair(node, std::vector<int>{index});
}
void set_node_map(FuncGraphPtr g, const std::string obj, AnfNodePtr node, std::vector<int> index) {
graph_info_map_[g].node_map[obj] = std::make_pair(node, index);
}
void set_tuple_node_map(const FuncGraphPtr &g, const py::object &node, const AnfNodePtr &cnode,
const std::vector<int> &idx, bool is_param = false);


private:
PynativeExecutor();
static std::shared_ptr<PynativeExecutor> executor_; static std::shared_ptr<PynativeExecutor> executor_;
static std::mutex instance_lock_; static std::mutex instance_lock_;
static ResourcePtr resource_;
static int graph_id_; static int graph_id_;
bool grad_flag_;
bool first_grad_step_;
std::unordered_map<std::string, FuncGraphPtr> graph_map_;
std::unordered_map<std::string, FuncGraphPtr> cell_graph_map_;
std::unordered_map<std::string, ResourcePtr> cell_resource_map_;
bool grad_flag_{false};
bool first_grad_step_{false};
bool grad_is_running{false};
bool dynamic_shape{false};

// Used for construct grad graph
FuncGraphPtr top_g_{nullptr};
FuncGraphPtr curr_g_{nullptr};
FuncGraphPtr df_builder_{nullptr};
ResourcePtr resource_{nullptr};
// Records forwrad graph, the bottom is top graph
std::stack<FuncGraphPtr> graph_context_;
std::unordered_set<std::string> top_graph_cells_;

// record all info of a graph
std::unordered_map<FuncGraphPtr, GraphInfo> graph_info_map_; std::unordered_map<FuncGraphPtr, GraphInfo> graph_info_map_;
std::unordered_map<std::string, ResourcePtr> cell_resource_map_;
std::unordered_map<std::string, std::pair<FuncGraphPtr, bool>> cell_graph_map_;
// key: cell_id, value: (send_id, weigths_id), cache for sens and weight change
std::unordered_map<std::string, std::pair<std::string, std::string>> cell_sw_map_;
// key: cell_id, value: (forward graph, grad graph)
std::unordered_map<std::string, std::pair<FuncGraphPtr, FuncGraphPtr>> df_builder_map_;

// used for runop and replace forward result of grad graph
std::unordered_map<std::string, ValuePtr> op_forward_map_; std::unordered_map<std::string, ValuePtr> op_forward_map_;
std::unordered_map<std::string, size_t> op_id_map_; std::unordered_map<std::string, size_t> op_id_map_;
std::unordered_map<std::string, std::string> obj_to_forward_id_; std::unordered_map<std::string, std::string> obj_to_forward_id_;
std::unordered_map<std::string, abstract::AbstractBasePtr> node_abs_map_; std::unordered_map<std::string, abstract::AbstractBasePtr> node_abs_map_;
std::unordered_map<std::string, FuncGraphPtr> df_builder_map_;
// the stack that records the context of graph created, the bottom is the top graph
std::stack<FuncGraphPtr> graph_context_;
FuncGraphPtr top_g_;
FuncGraphPtr df_builder_;
FuncGraphPtr curr_g_;
std::unordered_map<std::string, AbstractListMap> prim_abs_list_; std::unordered_map<std::string, AbstractListMap> prim_abs_list_;
std::set<std::string> top_graph_cells_;
}; };


using PynativeExecutorPtr = std::shared_ptr<PynativeExecutor>; using PynativeExecutorPtr = std::shared_ptr<PynativeExecutor>;


+ 3
- 0
mindspore/common/api.py View File

@@ -298,6 +298,9 @@ class _PynativeExecutor:
def end_graph(self, obj, output, *args, **kwargs): def end_graph(self, obj, output, *args, **kwargs):
self._executor.end_graph(obj, output, *args, *(kwargs.values())) self._executor.end_graph(obj, output, *args, *(kwargs.values()))


def check_graph(self, obj, *args, **kwargs):
return self._executor.check_graph(obj, *args, *(kwargs.values()))

def grad(self, grad, obj, weights, *args, **kwargs): def grad(self, grad, obj, weights, *args, **kwargs):
self._executor.grad_net(grad, obj, weights, *args, *(kwargs.values())) self._executor.grad_net(grad, obj, weights, *args, *(kwargs.values()))




+ 2
- 1
mindspore/nn/cell.py View File

@@ -244,7 +244,8 @@ class Cell(Cell_):
raise AttributeError("'{}' object has no attribute '{}'.".format(type(self).__name__, name)) raise AttributeError("'{}' object has no attribute '{}'.".format(type(self).__name__, name))


def __del__(self): def __del__(self):
_pynative_exec.clear(str(id(self)))
if context.get_context("mode") == context.PYNATIVE_MODE:
_pynative_exec.clear(str(id(self)))
if hasattr(self, "_create_time"): if hasattr(self, "_create_time"):
_executor.del_net_res(str(self._create_time)) _executor.del_net_res(str(self._create_time))




+ 3
- 0
mindspore/ops/composite/base.py View File

@@ -337,6 +337,9 @@ class GradOperation(GradOperation_):
else: else:
@_wrap_func @_wrap_func
def after_grad(*args, **kwargs): def after_grad(*args, **kwargs):
if _pynative_exec.check_graph(fn, *args, **kwargs):
print("Another grad step is running")
fn.already_run = False
self._pynative_forward_run(args, kwargs, fn) self._pynative_forward_run(args, kwargs, fn)
_pynative_exec.grad(grad_, fn, weights, *args, **kwargs) _pynative_exec.grad(grad_, fn, weights, *args, **kwargs)
out = _pynative_exec(*args, **kwargs) out = _pynative_exec(*args, **kwargs)


+ 1
- 1
tests/ut/python/pynative_mode/test_stop_gradient.py View File

@@ -260,7 +260,7 @@ def test_stop_gradient_4():
def stop_test(x): def stop_test(x):
return stop_gradient(x) return stop_gradient(x)


assert grad_all(stop_test)(Tensor(1, dtype=ms.int32)) == (1,)
assert grad_all(stop_test)(Tensor(1, dtype=ms.int32)) == (0,)




def test_stop_gradient_5(): def test_stop_gradient_5():


Loading…
Cancel
Save