|
|
|
@@ -147,13 +147,15 @@ def judge_index_type(index_type, target_type): |
|
|
|
@constexpr |
|
|
|
def check_type_valid(dtype, target_type, op_name): |
|
|
|
if dtype != target_type and (isinstance(target_type, (list, tuple)) and dtype not in target_type): |
|
|
|
raise TypeError(f"The '{op_name}' doesn't supoort {dtype}' and expecte to receive {target_type}.") |
|
|
|
raise TypeError( |
|
|
|
f"The '{op_name}' doesn't supoort {dtype}' and expecte to receive {target_type}.") |
|
|
|
|
|
|
|
|
|
|
|
@constexpr |
|
|
|
def check_index_type_valid(dtype, target_type, op_name): |
|
|
|
if dtype != target_type and (isinstance(target_type, (list, tuple)) and dtype not in target_type): |
|
|
|
raise IndexError(f"The '{op_name}' doesn't supoort {dtype}' and expecte to receive {target_type}.") |
|
|
|
raise IndexError( |
|
|
|
f"The '{op_name}' doesn't supoort {dtype}' and expecte to receive {target_type}.") |
|
|
|
|
|
|
|
|
|
|
|
@constexpr |
|
|
|
@@ -189,7 +191,8 @@ def get_pos_of_indexes_types(indexes_types, op_name): |
|
|
|
raise IndexError(f"For '{op_name}', the index elements only support " |
|
|
|
f"'Tensor', 'int32', 'int64', 'Slice', 'Ellipsis', but got {index_type}.") |
|
|
|
if len(ellipsis_positions) > 1: |
|
|
|
raise IndexError(f"For '{op_name}, an index can only have a single ellipsis('...')") |
|
|
|
raise IndexError( |
|
|
|
f"For '{op_name}, an index can only have a single ellipsis('...')") |
|
|
|
|
|
|
|
return slice_positions, ellipsis_positions, none_positions, int_positions, bool_positions, \ |
|
|
|
tensor_positions, sequence_positions |
|
|
|
@@ -260,7 +263,7 @@ def ellipsis2slice(input_, shape): |
|
|
|
return tuple(result) |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def slice2indices(input_slices, shape): |
|
|
|
""" |
|
|
|
Converts slice to indices. |
|
|
|
@@ -285,7 +288,7 @@ def slice2indices(input_slices, shape): |
|
|
|
return ravel |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def check_indices(indices_size, index): |
|
|
|
"""Checks indices whether is empty.""" |
|
|
|
if indices_size < 1: |
|
|
|
@@ -294,7 +297,7 @@ def check_indices(indices_size, index): |
|
|
|
return indices_size |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def check_indices_value_size(indices_size, value_size): |
|
|
|
"""Checks if the sizes are already matched.""" |
|
|
|
if value_size < 1: |
|
|
|
@@ -307,7 +310,7 @@ def check_indices_value_size(indices_size, value_size): |
|
|
|
return value_size |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def integer_to_indices(index, shape): |
|
|
|
"""Converts int or tuple[int] to indices.""" |
|
|
|
size = reduce(lambda x, y: x * y, shape) |
|
|
|
@@ -317,7 +320,7 @@ def integer_to_indices(index, shape): |
|
|
|
return Tensor(value, dtype=mstype.int32) |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def tuple_element_is_int(indexs): |
|
|
|
"""Judges tuple element type.""" |
|
|
|
if not indexs: |
|
|
|
@@ -330,18 +333,19 @@ def tuple_element_is_int(indexs): |
|
|
|
return False |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def tuple_index_int_cnt(types, op_name): |
|
|
|
"""count the int type of types which contains the tuple elements' type.""" |
|
|
|
int_cnt = sum(isinstance(ele, mstype.Int) for ele in types) |
|
|
|
return ALL_INT if int_cnt == len(types) else NO_INT if int_cnt == 0 else CONTAIN_INT |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def tuple_index_type_cnt(types, op_name): |
|
|
|
"""count the tensor type of types which contains the tuple elements' type.""" |
|
|
|
tensor_cnt = sum(isinstance(ele, mstype.tensor_type) for ele in types) |
|
|
|
basic_cnt = sum(isinstance(ele, (mstype.Int, mstype.Ellipsis_, mstype.Slice)) for ele in types) |
|
|
|
basic_cnt = sum(isinstance( |
|
|
|
ele, (mstype.Int, mstype.Ellipsis_, mstype.Slice)) for ele in types) |
|
|
|
if tensor_cnt == len(types): |
|
|
|
return ALL_TENSOR |
|
|
|
if basic_cnt == len(types): |
|
|
|
@@ -349,7 +353,7 @@ def tuple_index_type_cnt(types, op_name): |
|
|
|
return MIXED |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def check_value_elements(data_dtype, types): |
|
|
|
"""Judges the type of all elements of the tuple.""" |
|
|
|
tensors_number = 0 |
|
|
|
@@ -377,10 +381,10 @@ def check_value_elements(data_dtype, types): |
|
|
|
# TODO to del |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def get_index_tensor_dtype(dtype): |
|
|
|
"""Check a tuple of tensor data type.""" |
|
|
|
if dtype == mstype.int32: |
|
|
|
if dtype in mstype.int_type: |
|
|
|
return INT_ |
|
|
|
if dtype == mstype.bool_: |
|
|
|
return BOOL_ |
|
|
|
@@ -389,7 +393,7 @@ def get_index_tensor_dtype(dtype): |
|
|
|
|
|
|
|
|
|
|
|
# TODO to del |
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def check_index_tensors_dtype(indexes_types, op_name): |
|
|
|
"""Check a tuple of tensor data type.""" |
|
|
|
for index_type in indexes_types: |
|
|
|
@@ -400,7 +404,7 @@ def check_index_tensors_dtype(indexes_types, op_name): |
|
|
|
|
|
|
|
|
|
|
|
# TODO to del |
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def check_index_tensor_dtype(index_type, op_name): |
|
|
|
"""Check a tensor data type.""" |
|
|
|
if index_type in (mstype.int32, mstype.int64): |
|
|
|
@@ -410,7 +414,7 @@ def check_index_tensor_dtype(index_type, op_name): |
|
|
|
|
|
|
|
|
|
|
|
# TODO to del |
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def check_tensors_dtype_same(data_dtype, value_dtype, op_name): |
|
|
|
"""Check tensors data type same.""" |
|
|
|
if value_dtype == data_dtype: |
|
|
|
@@ -419,7 +423,7 @@ def check_tensors_dtype_same(data_dtype, value_dtype, op_name): |
|
|
|
f"is not consistent with assigned tensor data type {data_dtype}.") |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def generate_broadcast_shape(shapes, op_name): |
|
|
|
"""Generate broadcast shape for a tuple of shape.""" |
|
|
|
if not shapes: |
|
|
|
@@ -428,13 +432,14 @@ def generate_broadcast_shape(shapes, op_name): |
|
|
|
for i, shape in enumerate(shapes): |
|
|
|
logger.debug(f"Broadcasts the {i}th tensor, the shape is {shape}.") |
|
|
|
try: |
|
|
|
broadcast_shape = op_utils.get_broadcast_shape(broadcast_shape, shape, op_name) |
|
|
|
broadcast_shape = op_utils.get_broadcast_shape( |
|
|
|
broadcast_shape, shape, op_name) |
|
|
|
except ValueError as ex: |
|
|
|
raise IndexError(ex) |
|
|
|
return tuple(broadcast_shape) |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def check_two_shapes_need_broadcast(shape_x, shape_y): |
|
|
|
"""Check two shapes need broadcast.""" |
|
|
|
error = ValueError(f"For 'tensor setitem with tensor', the value tensor shape " |
|
|
|
@@ -451,14 +456,14 @@ def check_two_shapes_need_broadcast(shape_x, shape_y): |
|
|
|
return True |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def compute_multiples(origin_shape, broadcast_shape): |
|
|
|
"""Compute multiples between origin shape with broadcast shape.""" |
|
|
|
len_gap = len(broadcast_shape) - len(origin_shape) |
|
|
|
return broadcast_shape[0:len_gap] + tuple(map(lambda x, y: x // y, broadcast_shape[len_gap:], origin_shape)) |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def compute_new_shape(origin_shape, indexes_shapes_info): |
|
|
|
"""Compute new shape between origin shape with final shape.""" |
|
|
|
new_shape = [] |
|
|
|
@@ -470,21 +475,22 @@ def compute_new_shape(origin_shape, indexes_shapes_info): |
|
|
|
return tuple(new_shape) |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def check_sequence_index_type(sequence_index, op_name): |
|
|
|
"""check if the item's type of list_index is bool or int""" |
|
|
|
if not all([isinstance(index, (int, bool)) for index in sequence_index]): |
|
|
|
raise IndexError(f"In the {op_name} operation, only support 'integer' or 'boolean' array(list/tuple), " |
|
|
|
f"but got {type(index)} in array") |
|
|
|
for index in sequence_index: |
|
|
|
if not isinstance(index, int): |
|
|
|
raise IndexError(f"In the {op_name} operation, only support 'inter' or 'boolean' array(list/tuple), " |
|
|
|
f"but got {type(index)} in array.") |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def convert_int_to_slice(tuple_index): |
|
|
|
tuple_index_new = tuple(slice(i, i+1, 1) for i in tuple_index) |
|
|
|
return tuple_index_new |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def check_and_transform_int_index(index, shape, op_name): |
|
|
|
if index < -shape or index >= shape: |
|
|
|
raise IndexError(f"In the \"{op_name}\", the index should in the range [-{shape}, {shape-1}] to fit " |
|
|
|
@@ -494,16 +500,20 @@ def check_and_transform_int_index(index, shape, op_name): |
|
|
|
return index |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def transform_sequence_index(sequence_index, shape, op_name): |
|
|
|
"""transform list or tuple with integer and boolean to tuple with integer index""" |
|
|
|
bool_count = len(list(filter(lambda index: isinstance(index, bool), sequence_index))) |
|
|
|
int_count = len(list(filter(lambda index: isinstance(index, int), sequence_index)))-bool_count |
|
|
|
bool_count = len( |
|
|
|
list(filter(lambda index: isinstance(index, bool), sequence_index))) |
|
|
|
int_count = len( |
|
|
|
list(filter(lambda index: isinstance(index, int), sequence_index)))-bool_count |
|
|
|
if int_count == 0: |
|
|
|
if bool_count == shape: |
|
|
|
list_index = list(filter(lambda i: sequence_index[i], range(bool_count))) |
|
|
|
list_index = list( |
|
|
|
filter(lambda i: sequence_index[i], range(bool_count))) |
|
|
|
else: |
|
|
|
raise IndexError("The boolean array should have the same length with the corresponding dimensiton") |
|
|
|
raise IndexError( |
|
|
|
"The boolean array should have the same length with the corresponding dimensiton") |
|
|
|
else: |
|
|
|
list_index = [int(index) for index in sequence_index] |
|
|
|
for i, index in enumerate(list_index): |
|
|
|
@@ -512,7 +522,7 @@ def transform_sequence_index(sequence_index, shape, op_name): |
|
|
|
return sub_tuple_index |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def convert_slice_to_tensor(slice_number, final_shape, indexes_shapes_info, op_name): |
|
|
|
"""Convert a slice to a tensor.""" |
|
|
|
shape = [] |
|
|
|
@@ -540,7 +550,7 @@ def convert_slice_to_tensor(slice_number, final_shape, indexes_shapes_info, op_n |
|
|
|
return tensor |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def check_shapes_same(value_shapes, op_name): |
|
|
|
"""Check if the shapes in the tuple are consistent.""" |
|
|
|
for i, shape in enumerate(value_shapes): |
|
|
|
@@ -550,7 +560,7 @@ def check_shapes_same(value_shapes, op_name): |
|
|
|
return True |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def convert_scalar_to_tensor(data_shape, data_dtype, indices_shape, value, op_type): |
|
|
|
"""Convert a scalar to a tensor.""" |
|
|
|
if op_type == SET_ITEM_BY_ONE_TENSOR: |
|
|
|
@@ -563,7 +573,7 @@ def convert_scalar_to_tensor(data_shape, data_dtype, indices_shape, value, op_ty |
|
|
|
f" is not consistent with the assigned tensor data type {data_dtype}.") |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def convert_tuple_of_scalar_to_tensor(data_shape, data_dtype, index_shape, value, op_type): |
|
|
|
"""Convert a tuple of scalar to a tensor.""" |
|
|
|
updates_shape = generate_updates_shape(data_shape, index_shape, op_type) |
|
|
|
@@ -575,7 +585,7 @@ def convert_tuple_of_scalar_to_tensor(data_shape, data_dtype, index_shape, value |
|
|
|
return Tensor(np.tile(array, reps)) |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def generate_updates_shape(data_shape, index_shape, op_type): |
|
|
|
"""Generate updates shape for 'tensor setitem'.""" |
|
|
|
if op_type == SET_ITEM_BY_ONE_TENSOR: |
|
|
|
@@ -585,7 +595,7 @@ def generate_updates_shape(data_shape, index_shape, op_type): |
|
|
|
return updates_shape |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def check_tuple_index_len(data_rank, tuple_index_len, op_name): |
|
|
|
"""Check if the number of index tensor exceeds the dimension of the operated tensor.""" |
|
|
|
if tuple_index_len <= data_rank: |
|
|
|
@@ -594,7 +604,7 @@ def check_tuple_index_len(data_rank, tuple_index_len, op_name): |
|
|
|
f"is greater than the dimension {data_rank} of the operated tensor.") |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def generate_index_info_from_tuple_of_mixed_tensors(data_shape, indexes_types, tensor_indexes_shapes, |
|
|
|
tensor_indexes_dtypes, slice_indexes, op_name): |
|
|
|
""" |
|
|
|
@@ -694,14 +704,14 @@ def scalar_in_sequence(x, y): |
|
|
|
return False |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def get_np_eps(input_dtype): |
|
|
|
nptype = mstype.dtype_to_nptype(input_dtype) |
|
|
|
eps = np.finfo(nptype).eps |
|
|
|
return float(eps) |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def check_number_index_type(number): |
|
|
|
"""Check if it is int or bool number""" |
|
|
|
if isinstance(number, bool): |
|
|
|
@@ -712,7 +722,7 @@ def check_number_index_type(number): |
|
|
|
.format(number, type(number))) |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def get_stride_info_from_slice(data_shape, slice_index): |
|
|
|
"""Get stride info from a python slice""" |
|
|
|
begin, end, step = get_slice_stride(data_shape[0], slice_index) |
|
|
|
@@ -726,7 +736,7 @@ def get_stride_info_from_slice(data_shape, slice_index): |
|
|
|
return tuple(begin_strides), tuple(end_strides), tuple(step_strides) |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def get_stride_info_from_integer(data_shape, number): |
|
|
|
"""Get stride info from a integer""" |
|
|
|
begin_strides = [number] |
|
|
|
@@ -752,7 +762,7 @@ def get_slice_stride(dim_size, index_slice): |
|
|
|
return start, stop, step |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def get_stride_info_from_tuple(data_shape, tuple_index): |
|
|
|
"""Get stride info from a tuple""" |
|
|
|
begin_strides, end_strides, step_strides = [], [], [] |
|
|
|
@@ -792,14 +802,14 @@ def get_stride_info_from_tuple(data_shape, tuple_index): |
|
|
|
return tuple(begin_strides), tuple(end_strides), tuple(step_strides), shrink_axis |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def mstype_eq(x, y): |
|
|
|
if x == y: |
|
|
|
return True |
|
|
|
return False |
|
|
|
|
|
|
|
|
|
|
|
@ constexpr |
|
|
|
@constexpr |
|
|
|
def scalar_to_tensor(x): |
|
|
|
"""Convert a scalar to a tensor""" |
|
|
|
return Tensor(x) |