You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

eval.py 2.9 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """eval_criteo."""
  16. import os
  17. import sys
  18. import time
  19. import argparse
  20. from mindspore import context
  21. from mindspore.train.model import Model
  22. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  23. from src.autodis import ModelBuilder, AUCMetric
  24. from src.config import DataConfig, ModelConfig, TrainConfig
  25. from src.dataset import create_dataset, DataType
  26. sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
  27. parser = argparse.ArgumentParser(description='CTR Prediction')
  28. parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
  29. parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
  30. parser.add_argument('--device_target', type=str, default="Ascend", choices=["Ascend"],
  31. help='Default: Ascend')
  32. args_opt, _ = parser.parse_known_args()
  33. device_id = int(os.getenv('DEVICE_ID'))
  34. context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=device_id)
  35. def add_write(file_path, print_str):
  36. with open(file_path, 'a+', encoding='utf-8') as file_out:
  37. file_out.write(print_str + '\n')
  38. if __name__ == '__main__':
  39. data_config = DataConfig()
  40. model_config = ModelConfig()
  41. train_config = TrainConfig()
  42. ds_eval = create_dataset(args_opt.dataset_path, train_mode=False,
  43. epochs=1, batch_size=train_config.batch_size,
  44. data_type=DataType(data_config.data_format))
  45. model_builder = ModelBuilder(ModelConfig, TrainConfig)
  46. train_net, eval_net = model_builder.get_train_eval_net()
  47. train_net.set_train()
  48. eval_net.set_train(False)
  49. auc_metric = AUCMetric()
  50. model = Model(train_net, eval_network=eval_net, metrics={"auc": auc_metric})
  51. param_dict = load_checkpoint(args_opt.checkpoint_path)
  52. load_param_into_net(eval_net, param_dict)
  53. start = time.time()
  54. res = model.eval(ds_eval)
  55. eval_time = time.time() - start
  56. time_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
  57. out_str = f'{time_str} AUC: {list(res.values())[0]}, eval time: {eval_time}s.'
  58. print(out_str)
  59. add_write('./auc.log', str(out_str))