|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Using for eval the model checkpoint"""
- import os
-
- import argparse
- from absl import logging
-
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore import context, Model
-
- import src.constants as rconst
- from src.dataset import create_dataset
- from src.metrics import NCFMetric
- from src.ncf import NCFModel, NetWithLossClass, TrainStepWrap, PredictWithSigmoid
-
- from src.config import cfg
- logging.set_verbosity(logging.INFO)
-
-
- parser = argparse.ArgumentParser(description='NCF')
- parser.add_argument("--data_path", type=str, default="./dataset/") # The location of the input data.
- parser.add_argument("--dataset", type=str, default="ml-1m", choices=["ml-1m", "ml-20m"]) # Dataset to be trained and evaluated. ["ml-1m", "ml-20m"]
- parser.add_argument("--output_path", type=str, default="./output/") # The location of the output file.
- parser.add_argument("--eval_file_name", type=str, default="eval.log") # Eval output file.
- parser.add_argument("--checkpoint_file_path", type=str, default="./checkpoint/NCF-14_19418.ckpt") # The location of the checkpoint file.
- args, _ = parser.parse_known_args()
-
- def test_eval():
- """eval method"""
- if not os.path.exists(args.output_path):
- os.makedirs(args.output_path)
-
- layers = cfg.layers
- num_factors = cfg.num_factors
- topk = rconst.TOP_K
- num_eval_neg = rconst.NUM_EVAL_NEGATIVES
-
- ds_eval, num_eval_users, num_eval_items = create_dataset(test_train=False, data_dir=args.data_path,
- dataset=args.dataset, train_epochs=0,
- eval_batch_size=cfg.eval_batch_size)
- print("ds_eval.size: {}".format(ds_eval.get_dataset_size()))
-
- ncf_net = NCFModel(num_users=num_eval_users,
- num_items=num_eval_items,
- num_factors=num_factors,
- model_layers=layers,
- mf_regularization=0,
- mlp_reg_layers=[0.0, 0.0, 0.0, 0.0],
- mf_dim=16)
- param_dict = load_checkpoint(args.checkpoint_file_path)
- load_param_into_net(ncf_net, param_dict)
-
- loss_net = NetWithLossClass(ncf_net)
- train_net = TrainStepWrap(loss_net)
- # train_net.set_train()
- eval_net = PredictWithSigmoid(ncf_net, topk, num_eval_neg)
-
- ncf_metric = NCFMetric()
- model = Model(train_net, eval_network=eval_net, metrics={"ncf": ncf_metric})
-
- ncf_metric.clear()
- out = model.eval(ds_eval)
-
- eval_file_path = os.path.join(args.output_path, args.eval_file_name)
- eval_file = open(eval_file_path, "a+")
- eval_file.write("EvalCallBack: HR = {}, NDCG = {}\n".format(out['ncf'][0], out['ncf'][1]))
- eval_file.close()
- print("EvalCallBack: HR = {}, NDCG = {}".format(out['ncf'][0], out['ncf'][1]))
-
-
- if __name__ == '__main__':
- devid = int(os.getenv('DEVICE_ID'))
- context.set_context(mode=context.GRAPH_MODE,
- device_target="Davinci",
- save_graphs=True,
- device_id=devid)
-
- test_eval()
|