|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- Data operations, will be used in run_pretrain.py
- """
- import os
- import mindspore.common.dtype as mstype
- import mindspore.dataset.engine.datasets as de
- import mindspore.dataset.transforms.c_transforms as C
- from mindspore import log as logger
- from config import bert_net_cfg
-
-
- def create_bert_dataset(epoch_size=1, device_num=1, rank=0, do_shuffle="true", enable_data_sink="true",
- data_sink_steps=1, data_dir=None, schema_dir=None):
- """create train dataset"""
- # apply repeat operations
- repeat_count = epoch_size
- files = os.listdir(data_dir)
- data_files = []
- for file_name in files:
- data_files.append(os.path.join(data_dir, file_name))
- ds = de.TFRecordDataset(data_files, schema_dir,
- columns_list=["input_ids", "input_mask", "segment_ids", "next_sentence_labels",
- "masked_lm_positions", "masked_lm_ids", "masked_lm_weights"],
- shuffle=(do_shuffle == "true"), num_shards=device_num, shard_id=rank,
- shard_equal_rows=True)
- ori_dataset_size = ds.get_dataset_size()
- new_size = ori_dataset_size
- if enable_data_sink == "true":
- new_size = data_sink_steps * bert_net_cfg.batch_size
- ds.set_dataset_size(new_size)
- repeat_count = int(repeat_count * ori_dataset_size // ds.get_dataset_size())
- type_cast_op = C.TypeCast(mstype.int32)
- ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op)
- ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op)
- ds = ds.map(input_columns="next_sentence_labels", operations=type_cast_op)
- ds = ds.map(input_columns="segment_ids", operations=type_cast_op)
- ds = ds.map(input_columns="input_mask", operations=type_cast_op)
- ds = ds.map(input_columns="input_ids", operations=type_cast_op)
- # apply batch operations
- ds = ds.batch(bert_net_cfg.batch_size, drop_remainder=True)
- ds = ds.repeat(repeat_count)
- logger.info("data size: {}".format(ds.get_dataset_size()))
- logger.info("repeatcount: {}".format(ds.get_repeat_count()))
- return ds
|