You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_broadcast_op.py 9.6 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. from mindspore.common.tensor import Tensor
  19. from mindspore.ops import operations as P
  20. @pytest.mark.level0
  21. @pytest.mark.platform_x86_gpu_training
  22. @pytest.mark.env_onecard
  23. def test_nobroadcast():
  24. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  25. x1_np = np.random.rand(10, 20).astype(np.float32)
  26. x2_np = np.random.rand(10, 20).astype(np.float32)
  27. x1_np_int32 = np.random.randint(0, 100, (10, 20)).astype(np.int32)
  28. x2_np_int32 = np.random.randint(0, 100, (10, 20)).astype(np.int32)
  29. output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
  30. output_np = np.minimum(x1_np, x2_np)
  31. assert np.allclose(output_ms.asnumpy(), output_np)
  32. output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
  33. output_np = np.maximum(x1_np, x2_np)
  34. assert np.allclose(output_ms.asnumpy(), output_np)
  35. output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
  36. output_np = x1_np > x2_np
  37. assert np.allclose(output_ms.asnumpy(), output_np)
  38. output_ms = P.Greater()(Tensor(x1_np_int32), Tensor(x2_np_int32))
  39. output_np = x1_np_int32 > x2_np_int32
  40. assert np.allclose(output_ms.asnumpy(), output_np)
  41. output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
  42. output_np = x1_np < x2_np
  43. assert np.allclose(output_ms.asnumpy(), output_np)
  44. output_ms = P.Less()(Tensor(x1_np_int32), Tensor(x2_np_int32))
  45. output_np = x1_np_int32 < x2_np_int32
  46. assert np.allclose(output_ms.asnumpy(), output_np)
  47. output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
  48. output_np = np.power(x1_np, x2_np)
  49. assert np.allclose(output_ms.asnumpy(), output_np)
  50. output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
  51. output_np = x1_np / x2_np
  52. assert np.allclose(output_ms.asnumpy(), output_np)
  53. output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
  54. output_np = x1_np * x2_np
  55. assert np.allclose(output_ms.asnumpy(), output_np)
  56. output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
  57. output_np = x1_np - x2_np
  58. assert np.allclose(output_ms.asnumpy(), output_np)
  59. @pytest.mark.level0
  60. @pytest.mark.platform_x86_gpu_training
  61. @pytest.mark.env_onecard
  62. def test_nobroadcast_fp16():
  63. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  64. x1_np = np.random.rand(10, 20).astype(np.float16)
  65. x2_np = np.random.rand(10, 20).astype(np.float16)
  66. output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
  67. output_np = np.minimum(x1_np, x2_np)
  68. assert np.allclose(output_ms.asnumpy(), output_np)
  69. output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
  70. output_np = np.maximum(x1_np, x2_np)
  71. assert np.allclose(output_ms.asnumpy(), output_np)
  72. output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
  73. output_np = x1_np > x2_np
  74. assert np.allclose(output_ms.asnumpy(), output_np)
  75. output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
  76. output_np = x1_np < x2_np
  77. assert np.allclose(output_ms.asnumpy(), output_np)
  78. output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
  79. output_np = np.power(x1_np, x2_np)
  80. assert np.allclose(output_ms.asnumpy(), output_np)
  81. output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
  82. output_np = x1_np / x2_np
  83. assert np.allclose(output_ms.asnumpy(), output_np)
  84. output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
  85. output_np = x1_np * x2_np
  86. assert np.allclose(output_ms.asnumpy(), output_np)
  87. output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
  88. output_np = x1_np - x2_np
  89. assert np.allclose(output_ms.asnumpy(), output_np)
  90. @pytest.mark.level0
  91. @pytest.mark.platform_x86_gpu_training
  92. @pytest.mark.env_onecard
  93. def test_broadcast():
  94. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  95. x1_np = np.random.rand(3, 1, 5, 1).astype(np.float32)
  96. x2_np = np.random.rand(1, 4, 1, 6).astype(np.float32)
  97. x1_np_int32 = np.random.randint(0, 100, (3, 1, 5, 1)).astype(np.int32)
  98. x2_np_int32 = np.random.randint(0, 100, (3, 1, 5, 1)).astype(np.int32)
  99. output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
  100. output_np = np.minimum(x1_np, x2_np)
  101. assert np.allclose(output_ms.asnumpy(), output_np)
  102. output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
  103. output_np = np.maximum(x1_np, x2_np)
  104. assert np.allclose(output_ms.asnumpy(), output_np)
  105. output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
  106. output_np = x1_np > x2_np
  107. assert np.allclose(output_ms.asnumpy(), output_np)
  108. output_ms = P.Greater()(Tensor(x1_np_int32), Tensor(x2_np_int32))
  109. output_np = x1_np_int32 > x2_np_int32
  110. assert np.allclose(output_ms.asnumpy(), output_np)
  111. output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
  112. output_np = x1_np < x2_np
  113. assert np.allclose(output_ms.asnumpy(), output_np)
  114. output_ms = P.Less()(Tensor(x1_np_int32), Tensor(x2_np_int32))
  115. output_np = x1_np_int32 < x2_np_int32
  116. assert np.allclose(output_ms.asnumpy(), output_np)
  117. output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
  118. output_np = np.power(x1_np, x2_np)
  119. assert np.allclose(output_ms.asnumpy(), output_np)
  120. output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
  121. output_np = x1_np / x2_np
  122. assert np.allclose(output_ms.asnumpy(), output_np)
  123. output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
  124. output_np = x1_np * x2_np
  125. assert np.allclose(output_ms.asnumpy(), output_np)
  126. output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
  127. output_np = x1_np - x2_np
  128. assert np.allclose(output_ms.asnumpy(), output_np)
  129. @pytest.mark.level0
  130. @pytest.mark.platform_x86_gpu_training
  131. @pytest.mark.env_onecard
  132. def test_broadcast_diff_dims():
  133. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  134. x1_np = np.random.rand(2).astype(np.float32)
  135. x2_np = np.random.rand(2, 1).astype(np.float32)
  136. x1_np_int32 = np.random.randint(0, 100, (2)).astype(np.int32)
  137. x2_np_int32 = np.random.randint(0, 100, (2, 1)).astype(np.int32)
  138. output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
  139. output_np = np.minimum(x1_np, x2_np)
  140. assert np.allclose(output_ms.asnumpy(), output_np)
  141. output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
  142. output_np = np.maximum(x1_np, x2_np)
  143. assert np.allclose(output_ms.asnumpy(), output_np)
  144. output_ms = P.Greater()(Tensor(x1_np_int32), Tensor(x2_np_int32))
  145. output_np = x1_np_int32 > x2_np_int32
  146. assert np.allclose(output_ms.asnumpy(), output_np)
  147. output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
  148. output_np = x1_np > x2_np
  149. assert np.allclose(output_ms.asnumpy(), output_np)
  150. output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
  151. output_np = x1_np < x2_np
  152. assert np.allclose(output_ms.asnumpy(), output_np)
  153. output_ms = P.Less()(Tensor(x1_np_int32), Tensor(x2_np_int32))
  154. output_np = x1_np_int32 < x2_np_int32
  155. assert np.allclose(output_ms.asnumpy(), output_np)
  156. output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
  157. output_np = np.power(x1_np, x2_np)
  158. assert np.allclose(output_ms.asnumpy(), output_np)
  159. output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
  160. output_np = x1_np / x2_np
  161. assert np.allclose(output_ms.asnumpy(), output_np)
  162. output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
  163. output_np = x1_np * x2_np
  164. assert np.allclose(output_ms.asnumpy(), output_np)
  165. output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
  166. output_np = x1_np - x2_np
  167. assert np.allclose(output_ms.asnumpy(), output_np)
  168. @pytest.mark.level0
  169. @pytest.mark.platform_x86_gpu_training
  170. @pytest.mark.env_onecard
  171. def test_broadcast_fp16():
  172. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  173. x1_np = np.random.rand(3, 1, 5, 1).astype(np.float16)
  174. x2_np = np.random.rand(1, 4, 1, 6).astype(np.float16)
  175. output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
  176. output_np = np.minimum(x1_np, x2_np)
  177. assert np.allclose(output_ms.asnumpy(), output_np)
  178. output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
  179. output_np = np.maximum(x1_np, x2_np)
  180. assert np.allclose(output_ms.asnumpy(), output_np)
  181. output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
  182. output_np = x1_np > x2_np
  183. assert np.allclose(output_ms.asnumpy(), output_np)
  184. output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
  185. output_np = x1_np < x2_np
  186. assert np.allclose(output_ms.asnumpy(), output_np)
  187. output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
  188. output_np = np.power(x1_np, x2_np)
  189. assert np.allclose(output_ms.asnumpy(), output_np)
  190. output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
  191. output_np = x1_np / x2_np
  192. assert np.allclose(output_ms.asnumpy(), output_np)
  193. output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
  194. output_np = x1_np * x2_np
  195. assert np.allclose(output_ms.asnumpy(), output_np)
  196. output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
  197. output_np = x1_np - x2_np
  198. assert np.allclose(output_ms.asnumpy(), output_np)