|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """export checkpoint file into air, onnx, mindir models"""
- import argparse
- import numpy as np
-
- from mindspore import Tensor, context, load_checkpoint, export
- import mindspore.common.dtype as mstype
-
- from src.config import Config_CNNCTC
- from src.cnn_ctc import CNNCTC_Model
-
- parser = argparse.ArgumentParser(description="CNNCTC_export")
- parser.add_argument("--device_id", type=int, default=0, help="Device id")
- parser.add_argument("--file_name", type=str, default="cnn_ctc", help="CNN&CTC output air name.")
- parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format")
- parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
- help="device target")
- parser.add_argument("--ckpt_file", type=str, default="./ckpts/cnn_ctc.ckpt", help="CNN&CTC ckpt file.")
- args_opt = parser.parse_args()
-
- context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target)
- if args_opt.device_target == "Ascend":
- context.set_context(device_id=args_opt.device_id)
-
- if __name__ == "__main__":
- cfg = Config_CNNCTC()
- ckpt_path = cfg.CKPT_PATH
-
- if args_opt.ckpt_file != "":
- ckpt_path = args_opt.ckpt_file
-
- net = CNNCTC_Model(cfg.NUM_CLASS, cfg.HIDDEN_SIZE, cfg.FINAL_FEATURE_WIDTH)
-
- load_checkpoint(ckpt_path, net=net)
-
- bs = cfg.TEST_BATCH_SIZE
-
- input_data = Tensor(np.zeros([bs, 3, cfg.IMG_H, cfg.IMG_W]), mstype.float32)
-
- export(net, input_data, file_name=args_opt.file_name, file_format=args_opt.file_format)
|