You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

export.py 2.4 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. resnext export mindir.
  17. """
  18. import argparse
  19. import numpy as np
  20. from mindspore import context, Tensor
  21. from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
  22. from src.config import config
  23. from src.image_classification import get_network
  24. def parse_args():
  25. """parse_args"""
  26. parser = argparse.ArgumentParser('mindspore classification test')
  27. parser.add_argument('--platform', type=str, default='Ascend', choices=('Ascend', 'GPU'), help='run platform')
  28. parser.add_argument('--pretrained', type=str, required=True, help='fully path of pretrained model to load. '
  29. 'If it is a direction, it will test all ckpt')
  30. args, _ = parser.parse_known_args()
  31. args.image_size = config.image_size
  32. args.num_classes = config.num_classes
  33. args.backbone = config.backbone
  34. args.image_size = list(map(int, config.image_size.split(',')))
  35. args.image_height = args.image_size[0]
  36. args.image_width = args.image_size[1]
  37. args.export_format = config.export_format
  38. args.export_file = config.export_file
  39. return args
  40. if __name__ == '__main__':
  41. args_export = parse_args()
  42. context.set_context(mode=context.GRAPH_MODE, device_target=args_export.platform)
  43. net = get_network(args_export.backbone, num_classes=args_export.num_classes, platform=args_export.platform)
  44. param_dict = load_checkpoint(args_export.pretrained)
  45. load_param_into_net(net, param_dict)
  46. input_shp = [1, 3, args_export.image_height, args_export.image_width]
  47. input_array = Tensor(np.random.uniform(-1.0, 1.0, size=input_shp).astype(np.float32))
  48. export(net, input_array, file_name=args_export.export_file, file_format=args_export.export_format)