You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_fbeta.py 2.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. # """test_fbeta"""
  16. import math
  17. import numpy as np
  18. import pytest
  19. from mindspore.nn.metrics import get_metric_fn, Fbeta
  20. from mindspore import Tensor
  21. def test_classification_fbeta():
  22. """test_classification_fbeta"""
  23. x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
  24. y = Tensor(np.array([1, 0, 1]))
  25. y2 = Tensor(np.array([[0, 1], [1, 0], [0, 1]]))
  26. metric = get_metric_fn('F1')
  27. metric.clear()
  28. metric.update(x, y)
  29. fbeta = metric.eval()
  30. fbeta_mean = metric.eval(True)
  31. fbeta2 = metric(x, y2)
  32. assert np.allclose(fbeta, np.array([2/3, 2/3]))
  33. assert np.allclose(fbeta2, np.array([2/3, 2/3]))
  34. assert np.allclose(fbeta_mean, 2/3)
  35. def test_fbeta_update1():
  36. x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]]))
  37. y = Tensor(np.array([1, 0]))
  38. metric = Fbeta(2)
  39. metric.clear()
  40. with pytest.raises(ValueError):
  41. metric.update(x, y)
  42. def test_fbeta_update2():
  43. x1 = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]]))
  44. y1 = Tensor(np.array([1, 0, 2]))
  45. x2 = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
  46. y2 = Tensor(np.array([1, 0, 2]))
  47. metric = Fbeta(2)
  48. metric.clear()
  49. metric.update(x1, y1)
  50. with pytest.raises(ValueError):
  51. metric.update(x2, y2)
  52. def test_fbeta_init():
  53. with pytest.raises(ValueError):
  54. Fbeta(0)
  55. def test_fbeta_runtime():
  56. metric = Fbeta(2)
  57. metric.clear()
  58. with pytest.raises(RuntimeError):
  59. metric.eval()