You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_repeat.py 6.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. import mindspore.dataset.transforms.vision.c_transforms as vision
  16. from util import save_and_check
  17. import mindspore.dataset as ds
  18. import numpy as np
  19. from mindspore import log as logger
  20. DATA_DIR_TF = ["../data/dataset/testTFTestAllTypes/test.data"]
  21. SCHEMA_DIR_TF = "../data/dataset/testTFTestAllTypes/datasetSchema.json"
  22. COLUMNS_TF = ["col_1d", "col_2d", "col_3d", "col_binary", "col_float",
  23. "col_sint16", "col_sint32", "col_sint64"]
  24. GENERATE_GOLDEN = False
  25. # Data for CIFAR and MNIST are not part of build tree
  26. # They need to be downloaded directly
  27. # prep_data.py can be exuted or code below
  28. # import sys
  29. # sys.path.insert(0,"../../data")
  30. # import prep_data
  31. # prep_data.download_all_for_test("../../data")
  32. IMG_DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
  33. IMG_SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
  34. DATA_DIR_TF2 = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
  35. SCHEMA_DIR_TF2 = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
  36. def test_tf_repeat_01():
  37. """
  38. a simple repeat operation.
  39. """
  40. logger.info("Test Simple Repeat")
  41. # define parameters
  42. repeat_count = 2
  43. parameters = {"params": {'repeat_count': repeat_count}}
  44. # apply dataset operations
  45. data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False)
  46. data1 = data1.repeat(repeat_count)
  47. filename = "repeat_result.npz"
  48. save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
  49. def test_tf_repeat_02():
  50. """
  51. a simple repeat operation to tes infinite
  52. """
  53. logger.info("Test Infinite Repeat")
  54. # define parameters
  55. repeat_count = -1
  56. # apply dataset operations
  57. data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False)
  58. data1 = data1.repeat(repeat_count)
  59. itr = 0
  60. for _ in data1:
  61. itr = itr + 1
  62. if itr == 100:
  63. break
  64. assert itr == 100
  65. def test_tf_repeat_03():
  66. '''repeat and batch '''
  67. data1 = ds.TFRecordDataset(DATA_DIR_TF2, SCHEMA_DIR_TF2, shuffle=False)
  68. batch_size = 32
  69. resize_height, resize_width = 32, 32
  70. decode_op = vision.Decode()
  71. resize_op = vision.Resize((resize_height, resize_width), interpolation=ds.transforms.vision.Inter.LINEAR)
  72. data1 = data1.map(input_columns=["image"], operations=decode_op)
  73. data1 = data1.map(input_columns=["image"], operations=resize_op)
  74. data1 = data1.repeat(22)
  75. data1 = data1.batch(batch_size, drop_remainder=True)
  76. num_iter = 0
  77. for item in data1.create_dict_iterator():
  78. num_iter += 1
  79. logger.info("Number of tf data in data1: {}".format(num_iter))
  80. assert num_iter == 2
  81. def generator():
  82. for i in range(3):
  83. yield np.array([i]),
  84. def test_nested_repeat1():
  85. data = ds.GeneratorDataset(generator, ["data"])
  86. data = data.repeat(2)
  87. data = data.repeat(3)
  88. for i, d in enumerate(data):
  89. assert i % 3 == d[0][0]
  90. assert sum([1 for _ in data]) == 2 * 3 * 3
  91. def test_nested_repeat2():
  92. data = ds.GeneratorDataset(generator, ["data"])
  93. data = data.repeat(1)
  94. data = data.repeat(1)
  95. for i, d in enumerate(data):
  96. assert i % 3 == d[0][0]
  97. assert sum([1 for _ in data]) == 3
  98. def test_nested_repeat3():
  99. data = ds.GeneratorDataset(generator, ["data"])
  100. data = data.repeat(1)
  101. data = data.repeat(2)
  102. for i, d in enumerate(data):
  103. assert i % 3 == d[0][0]
  104. assert sum([1 for _ in data]) == 2 * 3
  105. def test_nested_repeat4():
  106. data = ds.GeneratorDataset(generator, ["data"])
  107. data = data.repeat(2)
  108. data = data.repeat(1)
  109. for i, d in enumerate(data):
  110. assert i % 3 == d[0][0]
  111. assert sum([1 for _ in data]) == 2 * 3
  112. def test_nested_repeat5():
  113. data = ds.GeneratorDataset(generator, ["data"])
  114. data = data.batch(3)
  115. data = data.repeat(2)
  116. data = data.repeat(3)
  117. for i, d in enumerate(data):
  118. assert np.array_equal(d[0], np.asarray([[0], [1], [2]]))
  119. assert sum([1 for _ in data]) == 6
  120. def test_nested_repeat6():
  121. data = ds.GeneratorDataset(generator, ["data"])
  122. data = data.repeat(2)
  123. data = data.batch(3)
  124. data = data.repeat(3)
  125. for i, d in enumerate(data):
  126. assert np.array_equal(d[0], np.asarray([[0], [1], [2]]))
  127. assert sum([1 for _ in data]) == 6
  128. def test_nested_repeat7():
  129. data = ds.GeneratorDataset(generator, ["data"])
  130. data = data.repeat(2)
  131. data = data.repeat(3)
  132. data = data.batch(3)
  133. for i, d in enumerate(data):
  134. assert np.array_equal(d[0], np.asarray([[0], [1], [2]]))
  135. assert sum([1 for _ in data]) == 6
  136. def test_nested_repeat8():
  137. data = ds.GeneratorDataset(generator, ["data"])
  138. data = data.batch(2, drop_remainder=False)
  139. data = data.repeat(2)
  140. data = data.repeat(3)
  141. for i, d in enumerate(data):
  142. if i % 2 == 0:
  143. assert np.array_equal(d[0], np.asarray([[0], [1]]))
  144. else:
  145. assert np.array_equal(d[0], np.asarray([[2]]))
  146. assert sum([1 for _ in data]) == 6 * 2
  147. def test_nested_repeat9():
  148. data = ds.GeneratorDataset(generator, ["data"])
  149. data = data.repeat()
  150. data = data.repeat(3)
  151. for i, d in enumerate(data):
  152. assert i % 3 == d[0][0]
  153. if i == 10:
  154. break
  155. def test_nested_repeat10():
  156. data = ds.GeneratorDataset(generator, ["data"])
  157. data = data.repeat(3)
  158. data = data.repeat()
  159. for i, d in enumerate(data):
  160. assert i % 3 == d[0][0]
  161. if i == 10:
  162. break
  163. def test_nested_repeat11():
  164. data = ds.GeneratorDataset(generator, ["data"])
  165. data = data.repeat(2)
  166. data = data.repeat(3)
  167. data = data.repeat(4)
  168. data = data.repeat(5)
  169. for i, d in enumerate(data):
  170. assert i % 3 == d[0][0]
  171. assert sum([1 for _ in data]) == 2 * 3 * 4 * 5 * 3
  172. if __name__ == "__main__":
  173. logger.info("--------test tf repeat 01---------")
  174. # test_repeat_01()
  175. logger.info("--------test tf repeat 02---------")
  176. # test_repeat_02()
  177. logger.info("--------test tf repeat 03---------")
  178. test_tf_repeat_03()