You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 3.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. ######################## train lenet example ########################
  17. train lenet and get network model files(.ckpt) :
  18. python train.py --data_path /YourDataPath
  19. """
  20. import os
  21. import argparse
  22. import mindspore.nn as nn
  23. from mindspore import context
  24. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
  25. from mindspore.train import Model
  26. from mindspore.nn.metrics import Accuracy
  27. from src.dataset import create_dataset
  28. from src.config import mnist_cfg as cfg
  29. from src.lenet_fusion import LeNet5 as LeNet5Fusion
  30. parser = argparse.ArgumentParser(description='MindSpore MNIST Example')
  31. parser.add_argument('--device_target', type=str, default="Ascend",
  32. choices=['Ascend', 'GPU', 'CPU'],
  33. help='device where the code will be implemented (default: Ascend)')
  34. parser.add_argument('--data_path', type=str, default="./MNIST_Data",
  35. help='path where the dataset is saved')
  36. parser.add_argument('--ckpt_path', type=str, default="",
  37. help='if mode is test, must provide path where the trained ckpt file')
  38. parser.add_argument('--dataset_sink_mode', type=bool, default=True,
  39. help='dataset_sink_mode is False or True')
  40. args = parser.parse_args()
  41. if __name__ == "__main__":
  42. context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
  43. ds_train = create_dataset(os.path.join(args.data_path, "train"), cfg.batch_size, cfg.epoch_size)
  44. step_size = ds_train.get_dataset_size()
  45. # define fusion network
  46. network = LeNet5Fusion(cfg.num_classes)
  47. # define network loss
  48. net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
  49. # define network optimization
  50. net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
  51. # call back and monitor
  52. time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
  53. config_ckpt = CheckpointConfig(save_checkpoint_steps=cfg.epoch_size * step_size,
  54. keep_checkpoint_max=cfg.keep_checkpoint_max,
  55. model_type=network.type)
  56. ckpt_callback = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ckpt)
  57. # define model
  58. model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
  59. print("============== Starting Training ==============")
  60. model.train(cfg['epoch_size'], ds_train, callbacks=[time_cb, ckpt_callback, LossMonitor()],
  61. dataset_sink_mode=args.dataset_sink_mode)
  62. print("============== End Training ==============")