|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157 |
- # BERT Example
- ## Description
- This example implements pre-training, fine-tuning and evaluation of [BERT-base](https://github.com/google-research/bert)(the base version of BERT model) and [BERT-NEZHA](https://github.com/huawei-noah/Pretrained-Language-Model)(a Chinese pretrained language model developed by Huawei, which introduced a improvement of Functional Relative Positional Encoding as an effective positional encoding scheme).
-
- ## Requirements
- - Install [MindSpore](https://www.mindspore.cn/install/en).
- - Download the zhwiki dataset for pre-training. Extract and clean text in the dataset with [WikiExtractor](https://github.com/attardi/wikiextractor). Convert the dataset to TFRecord format and move the files to a specified path.
- - Download the CLUE/SQuAD v1.1 dataset for fine-tuning and evaluation.
- > Notes:
- If you are running a fine-tuning or evaluation task, prepare the corresponding checkpoint file.
-
- ## Running the Example
- ### Pre-Training
- - Set options in `config.py`, including lossscale, optimizer and network. Click [here](https://www.mindspore.cn/tutorial/zh-CN/master/use/data_preparation/loading_the_datasets.html#tfrecord) for more information about dataset and the json schema file.
-
- - Run `run_standalone_pretrain.sh` for non-distributed pre-training of BERT-base and BERT-NEZHA model.
-
- ``` bash
- sh scripts/run_standalone_pretrain.sh DEVICE_ID EPOCH_SIZE DATA_DIR SCHEMA_DIR
- ```
- - Run `run_distribute_pretrain.sh` for distributed pre-training of BERT-base and BERT-NEZHA model.
-
- ``` bash
- sh scripts/run_distribute_pretrain.sh DEVICE_NUM EPOCH_SIZE DATA_DIR SCHEMA_DIR MINDSPORE_HCCL_CONFIG_PATH
- ```
-
- ### Fine-Tuning
- - Set options in `finetune_config.py`. Make sure the 'data_file', 'schema_file' and 'pre_training_file' are set to your own path. Set the 'pre_training_ckpt' to a saved checkpoint file generated after pre-training.
-
- - Run `finetune.py` for fine-tuning of BERT-base and BERT-NEZHA model.
-
- ```bash
- python finetune.py
- ```
-
- ### Evaluation
- - Set options in `evaluation_config.py`. Make sure the 'data_file', 'schema_file' and 'finetune_ckpt' are set to your own path.
-
- - NER: Run `evaluation.py` for evaluation of BERT-base and BERT-NEZHA model.
-
- ```bash
- python evaluation.py
- ```
- - SQuAD v1.1: Run `squadeval.py` and `SQuAD_postprocess.py` for evaluation of BERT-base and BERT-NEZHA model.
-
- ```bash
- python squadeval.py
- ```
-
- ```bash
- python SQuAD_postprocess.py
- ```
-
- ## Usage
- ### Pre-Training
- ```
- usage: run_pretrain.py [--distribute DISTRIBUTE] [--epoch_size N] [----device_num N] [--device_id N]
- [--enable_save_ckpt ENABLE_SAVE_CKPT]
- [--enable_lossscale ENABLE_LOSSSCALE] [--do_shuffle DO_SHUFFLE]
- [--enable_data_sink ENABLE_DATA_SINK] [--data_sink_steps N] [--checkpoint_path CHECKPOINT_PATH]
- [--save_checkpoint_steps N] [--save_checkpoint_num N]
- [--data_dir DATA_DIR] [--schema_dir SCHEMA_DIR]
-
- options:
- --distribute pre_training by serveral devices: "true"(training by more than 1 device) | "false", default is "false"
- --epoch_size epoch size: N, default is 1
- --device_num number of used devices: N, default is 1
- --device_id device id: N, default is 0
- --enable_save_ckpt enable save checkpoint: "true" | "false", default is "true"
- --enable_lossscale enable lossscale: "true" | "false", default is "true"
- --do_shuffle enable shuffle: "true" | "false", default is "true"
- --enable_data_sink enable data sink: "true" | "false", default is "true"
- --data_sink_steps set data sink steps: N, default is 1
- --checkpoint_path path to save checkpoint files: PATH, default is ""
- --save_checkpoint_steps steps for saving checkpoint files: N, default is 1000
- --save_checkpoint_num number for saving checkpoint files: N, default is 1
- --data_dir path to dataset directory: PATH, default is ""
- --schema_dir path to schema.json file, PATH, default is ""
- ```
- ## Options and Parameters
- It contains of parameters of BERT model and options for training, which is set in file `config.py`, `finetune_config.py` and `evaluation_config.py` respectively.
- ### Options:
- ```
- config.py:
- bert_network version of BERT model: base | nezha, default is base
- loss_scale_value initial value of loss scale: N, default is 2^32
- scale_factor factor used to update loss scale: N, default is 2
- scale_window steps for once updatation of loss scale: N, default is 1000
- optimizer optimizer used in the network: AdamWerigtDecayDynamicLR | Lamb | Momentum, default is "Lamb"
-
- finetune_config.py:
- task task type: NER | SQUAD | OTHERS
- num_labels number of labels to do classification
- data_file dataset file to load: PATH, default is "/your/path/train.tfrecord"
- schema_file dataset schema file to load: PATH, default is "/your/path/schema.json"
- epoch_num repeat counts of training: N, default is 5
- ckpt_prefix prefix used to save checkpoint files: PREFIX, default is "bert"
- ckpt_dir path to save checkpoint files: PATH, default is None
- pre_training_ckpt checkpoint file to load: PATH, default is "/your/path/pre_training.ckpt"
- use_crf whether to use crf for evaluation. use_crf takes effect only when task type is NER, default is False
- optimizer optimizer used in fine-tune network: AdamWeigtDecayDynamicLR | Lamb | Momentum, default is "Lamb"
-
- evaluation_config.py:
- task task type: NER | SQUAD | OTHERS
- num_labels number of labels to do classsification
- data_file dataset file to load: PATH, default is "/your/path/evaluation.tfrecord"
- schema_file dataset schema file to load: PATH, default is "/your/path/schema.json"
- finetune_ckpt checkpoint file to load: PATH, default is "/your/path/your.ckpt"
- use_crf whether to use crf for evaluation. use_crf takes effect only when task type is NER, default is False
- clue_benchmark whether to use clue benchmark. clue_benchmark takes effect only when task type is NER, default is False
- ```
-
- ### Parameters:
- ```
- Parameters for dataset and network (Pre-Training/Fine-Tuning/Evaluation):
- batch_size batch size of input dataset: N, default is 16
- seq_length length of input sequence: N, default is 128
- vocab_size size of each embedding vector: N, default is 21136
- hidden_size size of bert encoder layers: N, default is 768
- num_hidden_layers number of hidden layers: N, default is 12
- num_attention_heads number of attention heads: N, default is 12
- intermediate_size size of intermediate layer: N, default is 3072
- hidden_act activation function used: ACTIVATION, default is "gelu"
- hidden_dropout_prob dropout probability for BertOutput: Q, default is 0.1
- attention_probs_dropout_prob dropout probability for BertAttention: Q, default is 0.1
- max_position_embeddings maximum length of sequences: N, default is 512
- type_vocab_size size of token type vocab: N, default is 16
- initializer_range initialization value of TruncatedNormal: Q, default is 0.02
- use_relative_positions use relative positions or not: True | False, default is False
- input_mask_from_dataset use the input mask loaded form dataset or not: True | False, default is True
- token_type_ids_from_dataset use the token type ids loaded from dataset or not: True | False, default is True
- dtype data type of input: mstype.float16 | mstype.float32, default is mstype.float32
- compute_type compute type in BertTransformer: mstype.float16 | mstype.float32, default is mstype.float16
-
- Parameters for optimizer:
- AdamWeightDecayDynamicLR:
- decay_steps steps of the learning rate decay: N
- learning_rate value of learning rate: Q
- end_learning_rate value of end learning rate: Q, must be positive
- power power: Q
- warmup_steps steps of the learning rate warm up: N
- weight_decay weight decay: Q
- eps term added to the denominator to improve numerical stability: Q
-
- Lamb:
- decay_steps steps of the learning rate decay: N
- learning_rate value of learning rate: Q
- end_learning_rate value of end learning rate: Q
- power power: Q
- warmup_steps steps of the learning rate warm up: N
- weight_decay weight decay: Q
-
- Momentum:
- learning_rate value of learning rate: Q
- momentum momentum for the moving average: Q
- ```
-
|