|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306 |
- 
-
-
- # Welcome to the Model Zoo for MindSpore
-
- In order to facilitate developers to enjoy the benefits of MindSpore framework and Huawei chips, we will continue to add typical networks and models . If you have needs for the model zoo, you can file an issue on [gitee](https://gitee.com/mindspore/mindspore/issues) or [MindSpore](https://bbs.huaweicloud.com/forum/forum-1076-1.html), We will consider it in time.
-
- - SOTA models using the latest MindSpore APIs
-
- - The best benefits from MindSpore and Huawei chips
-
- - Officially maintained and supported
-
-
-
- # Table of Contents
-
- - [Models and Implementations](#models-and-implementations)
- - [Computer Vision](#computer-vision)
- - [Image Classification](#image-classification)
- - [GoogleNet](#googlenet)
- - [ResNet50[benchmark]](#resnet50)
- - [ResNet101](#resnet101)
- - [VGG16](#vgg16)
- - [AlexNet](#alexnet)
- - [LeNet](#lenet)
- - [Object Detection and Segmentation](#object-detection-and-segmentation)
- - [YoloV3](#yolov3)
- - [MobileNetV2](#mobilenetv2)
- - [MobileNetV3](#mobilenetv3)
- - [SSD](#ssd)
- - [Natural Language Processing](#natural-language-processing)
- - [BERT](#bert)
- - [MASS](#mass)
-
-
- # Announcements
- | Date | News |
- | ------------ | ------------------------------------------------------------ |
- | May 31, 2020 | Support [MindSpore v0.3.0-alpha](https://www.mindspore.cn/news/newschildren?id=215) |
-
-
- # Models and Implementations
-
- ## Computer Vision
-
- ### Image Classification
-
- #### [GoogleNet](#table-of-contents)
- | Parameters | GoogleNet |
- | -------------------------- | ------------------------------------------------------------ |
- | Published Year | 2014 |
- | Paper | [Going Deeper with Convolutions](https://arxiv.org/abs/1409.4842) |
- | Resource | Ascend 910 |
- | Features | • Mixed Precision • Multi-GPU training support with Ascend |
- | MindSpore Version | 0.3.0-alpha |
- | Dataset | CIFAR-10 |
- | Training Parameters | epoch=125, batch_size = 128, lr=0.1 |
- | Optimizer | Momentum |
- | Loss Function | Softmax Cross Entropy |
- | Accuracy | 1pc: 93.4%; 8pcs: 92.17% |
- | Speed | 79 ms/Step |
- | Loss | 0.0016 |
- | Params (M) | 6.8 |
- | Checkpoint for Fine tuning | 43.07M (.ckpt file) |
- | Model for inference | 21.50M (.onnx file), 21.60M(.geir file) |
- | Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/googlenet |
-
- #### [ResNet50](#table-of-contents)
-
- | Parameters | ResNet50 |
- | -------------------------- | -------- |
- | Published Year | |
- | Paper | |
- | Resource | |
- | Features | |
- | MindSpore Version | |
- | Dataset | |
- | Training Parameters | |
- | Optimizer | |
- | Loss Function | |
- | Accuracy | |
- | Speed | |
- | Loss | |
- | Params (M) | |
- | Checkpoint for Fine tuning | |
- | Model for inference | |
- | Scripts | |
-
- #### [ResNet101](#table-of-contents)
-
- | Parameters | ResNet101 |
- | -------------------------- | --------- |
- | Published Year | |
- | Paper | |
- | Resource | |
- | Features | |
- | MindSpore Version | |
- | Dataset | |
- | Training Parameters | |
- | Optimizer | |
- | Loss Function | |
- | Accuracy | |
- | Speed | |
- | Loss | |
- | Params (M) | |
- | Checkpoint for Fine tuning | |
- | Model for inference | |
- | Scripts | |
-
- #### [VGG16](#table-of-contents)
-
- | Parameters | VGG16 |
- | -------------------------- | ----- |
- | Published Year | |
- | Paper | |
- | Resource | |
- | Features | |
- | MindSpore Version | |
- | Dataset | |
- | Training Parameters | |
- | Optimizer | |
- | Loss Function | |
- | Accuracy | |
- | Speed | |
- | Loss | |
- | Params (M) | |
- | Checkpoint for Fine tuning | |
- | Model for inference | |
- | Scripts | |
-
- #### [AlexNet](#table-of-contents)
-
- | Parameters | AlexNet |
- | -------------------------- | ------- |
- | Published Year | |
- | Paper | |
- | Resource | |
- | Features | |
- | MindSpore Version | |
- | Dataset | |
- | Training Parameters | |
- | Optimizer | |
- | Loss Function | |
- | Accuracy | |
- | Speed | |
- | Loss | |
- | Params (M) | |
- | Checkpoint for Fine tuning | |
- | Model for inference | |
- | Scripts | |
-
- #### [LeNet](#table-of-contents)
-
- | Parameters | LeNet |
- | -------------------------- | ----- |
- | Published Year | |
- | Paper | |
- | Resource | |
- | Features | |
- | MindSpore Version | |
- | Dataset | |
- | Training Parameters | |
- | Optimizer | |
- | Loss Function | |
- | Accuracy | |
- | Speed | |
- | Loss | |
- | Params (M) | |
- | Checkpoint for Fine tuning | |
- | Model for inference | |
- | Scripts | |
-
- ### Object Detection and Segmentation
-
- #### [YoloV3](#table-of-contents)
-
- | Parameters | YoLoV3 |
- | -------------------------------- | ------ |
- | Published Year | |
- | Paper | |
- | Resource | |
- | Features | |
- | MindSpore Version | |
- | Dataset | |
- | Training Parameters | |
- | Optimizer | |
- | Loss Function | |
- | Mean Average Precision (mAP@0.5) | |
- | Speed | |
- | Loss | |
- | Params (M) | |
- | Checkpoint for Fine tuning | |
- | Model for inference | |
- | Scripts | |
-
- #### [MobileNetV2](#table-of-contents)
-
- | Parameters | MobileNetV2 |
- | -------------------------------- | ----------- |
- | Published Year | |
- | Paper | |
- | Resource | |
- | Features | |
- | MindSpore Version | |
- | Dataset | |
- | Training Parameters | |
- | Optimizer | |
- | Loss Function | |
- | Mean Average Precision (mAP@0.5) | |
- | Speed | |
- | Loss | |
- | Params (M) | |
- | Checkpoint for Fine tuning | |
- | Model for inference | |
- | Scripts | |
-
- #### [MobileNetV3](#table-of-contents)
-
- | Parameters | MobileNetV3 |
- | -------------------------------- | ----------- |
- | Published Year | |
- | Paper | |
- | Resource | |
- | Features | |
- | MindSpore Version | |
- | Dataset | |
- | Training Parameters | |
- | Optimizer | |
- | Loss Function | |
- | Mean Average Precision (mAP@0.5) | |
- | Speed | |
- | Loss | |
- | Params (M) | |
- | Checkpoint for Fine tuning | |
- | Model for inference | |
- | Scripts | |
-
- #### [SSD](#table-of-contents)
-
- | Parameters | SSD |
- | -------------------------------- | ---- |
- | Published Year | |
- | Paper | |
- | Resource | |
- | Features | |
- | MindSpore Version | |
- | Dataset | |
- | Training Parameters | |
- | Optimizer | |
- | Loss Function | |
- | Mean Average Precision (mAP@0.5) | |
- | Speed | |
- | Loss | |
- | Params (M) | |
- | Checkpoint for Fine tuning | |
- | Model for inference | |
- | Scripts | |
-
- ## Natural Language Processing
-
- #### [BERT](#table-of-contents)
-
- | Parameters | BERT |
- | -------------------------- | ---- |
- | Published Year | |
- | Paper | |
- | Resource | |
- | Features | |
- | MindSpore Version | |
- | Dataset | |
- | Training Parameters | |
- | Optimizer | |
- | Loss Function | |
- | GLUE Score | |
- | Speed | |
- | Loss | |
- | Params (M) | |
- | Checkpoint for Fine tuning | |
- | Model for inference | |
- | Scripts | |
-
- #### [MASS](#table-of-contents)
-
- | Parameters | MASS |
- | -------------------------- | ---- |
- | Published Year | |
- | Paper | |
- | Resource | |
- | Features | |
- | MindSpore Version | |
- | Dataset | |
- | Training Parameters | |
- | Optimizer | |
- | Loss Function | |
- | ROUGE Score | |
- | Speed | |
- | Loss | |
- | Params (M) | |
- | Checkpoint for Fine tuning | |
- | Model for inference | |
- | Scripts | |
-
- #### License
-
- [Apache License 2.0](https://github.com/mindspore-ai/mindspore/blob/master/LICENSE)
|