You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 9.6 kB

5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train resnet."""
  16. import os
  17. import random
  18. import argparse
  19. import ast
  20. import numpy as np
  21. from mindspore import context
  22. from mindspore import Tensor
  23. from mindspore import dataset as de
  24. from mindspore.parallel._auto_parallel_context import auto_parallel_context
  25. from mindspore.nn.optim.momentum import Momentum
  26. from mindspore.train.model import Model
  27. from mindspore.context import ParallelMode
  28. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
  29. from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
  30. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  31. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  32. from mindspore.communication.management import init, get_rank, get_group_size
  33. import mindspore.nn as nn
  34. import mindspore.common.initializer as weight_init
  35. from src.lr_generator import get_lr, warmup_cosine_annealing_lr
  36. from src.CrossEntropySmooth import CrossEntropySmooth
  37. parser = argparse.ArgumentParser(description='Image classification')
  38. parser.add_argument('--net', type=str, default=None, help='Resnet Model, either resnet50 or resnet101')
  39. parser.add_argument('--dataset', type=str, default=None, help='Dataset, either cifar10 or imagenet2012')
  40. parser.add_argument('--run_distribute', type=ast.literal_eval, default=False, help='Run distribute')
  41. parser.add_argument('--device_num', type=int, default=1, help='Device num.')
  42. parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
  43. parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
  44. parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
  45. parser.add_argument('--parameter_server', type=ast.literal_eval, default=False, help='Run parameter server train')
  46. args_opt = parser.parse_args()
  47. random.seed(1)
  48. np.random.seed(1)
  49. de.config.set_seed(1)
  50. if args_opt.net == "resnet50":
  51. from src.resnet import resnet50 as resnet
  52. if args_opt.dataset == "cifar10":
  53. from src.config import config1 as config
  54. from src.dataset import create_dataset1 as create_dataset
  55. else:
  56. from src.config import config2 as config
  57. from src.dataset import create_dataset2 as create_dataset
  58. elif args_opt.net == "resnet101":
  59. from src.resnet import resnet101 as resnet
  60. from src.config import config3 as config
  61. from src.dataset import create_dataset3 as create_dataset
  62. else:
  63. from src.resnet import se_resnet50 as resnet
  64. from src.config import config4 as config
  65. from src.dataset import create_dataset4 as create_dataset
  66. if __name__ == '__main__':
  67. target = args_opt.device_target
  68. ckpt_save_dir = config.save_checkpoint_path
  69. # init context
  70. context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False)
  71. if args_opt.run_distribute:
  72. if target == "Ascend":
  73. device_id = int(os.getenv('DEVICE_ID'))
  74. context.set_context(device_id=device_id, enable_auto_mixed_precision=True)
  75. context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
  76. mirror_mean=True)
  77. if args_opt.net == "resnet50" or args_opt.net == "se-resnet50":
  78. auto_parallel_context().set_all_reduce_fusion_split_indices([85, 160])
  79. else:
  80. auto_parallel_context().set_all_reduce_fusion_split_indices([180, 313])
  81. init()
  82. # GPU target
  83. else:
  84. init()
  85. context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL,
  86. mirror_mean=True)
  87. if args_opt.net == "resnet50":
  88. auto_parallel_context().set_all_reduce_fusion_split_indices([85, 160])
  89. ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/"
  90. # create dataset
  91. dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, repeat_num=1,
  92. batch_size=config.batch_size, target=target)
  93. step_size = dataset.get_dataset_size()
  94. # define net
  95. net = resnet(class_num=config.class_num)
  96. if args_opt.parameter_server:
  97. net.set_param_ps()
  98. # init weight
  99. if args_opt.pre_trained:
  100. param_dict = load_checkpoint(args_opt.pre_trained)
  101. load_param_into_net(net, param_dict)
  102. else:
  103. for _, cell in net.cells_and_names():
  104. if isinstance(cell, nn.Conv2d):
  105. cell.weight.default_input = weight_init.initializer(weight_init.XavierUniform(),
  106. cell.weight.shape,
  107. cell.weight.dtype)
  108. if isinstance(cell, nn.Dense):
  109. cell.weight.default_input = weight_init.initializer(weight_init.TruncatedNormal(),
  110. cell.weight.shape,
  111. cell.weight.dtype)
  112. # init lr
  113. if args_opt.net == "resnet50" or args_opt.net == "se-resnet50":
  114. lr = get_lr(lr_init=config.lr_init, lr_end=config.lr_end, lr_max=config.lr_max,
  115. warmup_epochs=config.warmup_epochs, total_epochs=config.epoch_size, steps_per_epoch=step_size,
  116. lr_decay_mode=config.lr_decay_mode)
  117. else:
  118. lr = warmup_cosine_annealing_lr(config.lr, step_size, config.warmup_epochs, config.epoch_size,
  119. config.pretrain_epoch_size * step_size)
  120. lr = Tensor(lr)
  121. # define opt
  122. decayed_params = []
  123. no_decayed_params = []
  124. for param in net.trainable_params():
  125. if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
  126. decayed_params.append(param)
  127. else:
  128. no_decayed_params.append(param)
  129. group_params = [{'params': decayed_params, 'weight_decay': config.weight_decay},
  130. {'params': no_decayed_params},
  131. {'order_params': net.trainable_params()}]
  132. opt = Momentum(group_params, lr, config.momentum, loss_scale=config.loss_scale)
  133. # define loss, model
  134. if target == "Ascend":
  135. if args_opt.dataset == "imagenet2012":
  136. if not config.use_label_smooth:
  137. config.label_smooth_factor = 0.0
  138. loss = CrossEntropySmooth(sparse=True, reduction="mean",
  139. smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
  140. else:
  141. loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
  142. loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
  143. model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
  144. amp_level="O2", keep_batchnorm_fp32=False)
  145. else:
  146. # GPU target
  147. if args_opt.dataset == "imagenet2012":
  148. if not config.use_label_smooth:
  149. config.label_smooth_factor = 0.0
  150. loss = CrossEntropySmooth(sparse=True, reduction="mean",
  151. smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
  152. else:
  153. loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
  154. if args_opt.net == "resnet101" or args_opt.net == "resnet50":
  155. opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, config.weight_decay,
  156. config.loss_scale)
  157. loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
  158. # Mixed precision
  159. model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
  160. amp_level="O2", keep_batchnorm_fp32=True)
  161. else:
  162. ## fp32 training
  163. opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, config.weight_decay)
  164. model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
  165. # define callbacks
  166. time_cb = TimeMonitor(data_size=step_size)
  167. loss_cb = LossMonitor()
  168. cb = [time_cb, loss_cb]
  169. if config.save_checkpoint:
  170. config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
  171. keep_checkpoint_max=config.keep_checkpoint_max)
  172. ckpt_cb = ModelCheckpoint(prefix="resnet", directory=ckpt_save_dir, config=config_ck)
  173. cb += [ckpt_cb]
  174. # train model
  175. if args_opt.net == "se-resnet50":
  176. config.epoch_size = config.train_epoch_size
  177. model.train(config.epoch_size - config.pretrain_epoch_size, dataset, callbacks=cb,
  178. dataset_sink_mode=(not args_opt.parameter_server))