You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 4.7 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train."""
  16. import argparse
  17. from mindspore import context
  18. from mindspore.communication.management import init
  19. from mindspore.nn.optim.momentum import Momentum
  20. from mindspore import Model
  21. from mindspore.context import ParallelMode
  22. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  23. from mindspore.train.callback import Callback, CheckpointConfig, ModelCheckpoint, TimeMonitor
  24. from src.md_dataset import create_dataset
  25. from src.losses import OhemLoss
  26. from src.deeplabv3 import deeplabv3_resnet50
  27. from src.config import config
  28. parser = argparse.ArgumentParser(description="Deeplabv3 training")
  29. parser.add_argument("--distribute", type=str, default="false", help="Run distribute, default is false.")
  30. parser.add_argument('--data_url', required=True, default=None, help='Train data url')
  31. parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
  32. parser.add_argument('--checkpoint_url', default=None, help='Checkpoint path')
  33. args_opt = parser.parse_args()
  34. print(args_opt)
  35. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
  36. class LossCallBack(Callback):
  37. """
  38. Monitor the loss in training.
  39. Note:
  40. if per_print_times is 0 do not print loss.
  41. Args:
  42. per_print_times (int): Print loss every times. Default: 1.
  43. """
  44. def __init__(self, per_print_times=1):
  45. super(LossCallBack, self).__init__()
  46. if not isinstance(per_print_times, int) or per_print_times < 0:
  47. raise ValueError("print_step must be int and >= 0")
  48. self._per_print_times = per_print_times
  49. def step_end(self, run_context):
  50. cb_params = run_context.original_args()
  51. print("epoch: {}, step: {}, outputs are {}".format(cb_params.cur_epoch_num, cb_params.cur_step_num,
  52. str(cb_params.net_outputs)))
  53. def model_fine_tune(flags, train_net, fix_weight_layer):
  54. checkpoint_path = flags.checkpoint_url
  55. if checkpoint_path is None:
  56. return
  57. param_dict = load_checkpoint(checkpoint_path)
  58. load_param_into_net(train_net, param_dict)
  59. for para in train_net.trainable_params():
  60. if fix_weight_layer in para.name:
  61. para.requires_grad = False
  62. if __name__ == "__main__":
  63. if args_opt.distribute == "true":
  64. context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True)
  65. init()
  66. args_opt.base_size = config.crop_size
  67. args_opt.crop_size = config.crop_size
  68. train_dataset = create_dataset(args_opt, args_opt.data_url, 1, config.batch_size, usage="train")
  69. dataset_size = train_dataset.get_dataset_size()
  70. time_cb = TimeMonitor(data_size=dataset_size)
  71. callback = [time_cb, LossCallBack()]
  72. if config.enable_save_ckpt:
  73. config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_steps,
  74. keep_checkpoint_max=config.save_checkpoint_num)
  75. ckpoint_cb = ModelCheckpoint(prefix='checkpoint_deeplabv3', config=config_ck)
  76. callback.append(ckpoint_cb)
  77. net = deeplabv3_resnet50(config.seg_num_classes, [config.batch_size, 3, args_opt.crop_size, args_opt.crop_size],
  78. infer_scale_sizes=config.eval_scales, atrous_rates=config.atrous_rates,
  79. decoder_output_stride=config.decoder_output_stride, output_stride=config.output_stride,
  80. fine_tune_batch_norm=config.fine_tune_batch_norm, image_pyramid=config.image_pyramid)
  81. net.set_train()
  82. model_fine_tune(args_opt, net, 'layer')
  83. loss = OhemLoss(config.seg_num_classes, config.ignore_label)
  84. opt = Momentum(filter(lambda x: 'beta' not in x.name and 'gamma' not in x.name and 'depth' not in x.name and 'bias' not in x.name, net.trainable_params()), learning_rate=config.learning_rate, momentum=config.momentum, weight_decay=config.weight_decay)
  85. model = Model(net, loss, opt)
  86. model.train(config.epoch_size, train_dataset, callback)