|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """export checkpoint file into models"""
-
- import argparse
- import numpy as np
- import mindspore.nn as nn
- from mindspore.common.tensor import Tensor
- import mindspore.ops.operations as P
- from mindspore import context
- from mindspore.train.serialization import load_checkpoint, export, load_param_into_net
- from src.fasttext_model import FastText
-
- parser = argparse.ArgumentParser(description='fasttexts')
- parser.add_argument('--device_target', type=str, choices=["Ascend", "GPU", "CPU"],
- default='Ascend', help='Device target')
- parser.add_argument('--device_id', type=int, default=0, help='Device id')
- parser.add_argument('--ckpt_file', type=str, required=True, help='Checkpoint file path')
- parser.add_argument('--file_name', type=str, default='fasttexts', help='Output file name')
- parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR',
- help='Output file format')
- parser.add_argument('--data_name', type=str, required=True, default='ag',
- help='Dataset name. eg. ag, dbpedia, yelp_p')
- args = parser.parse_args()
-
- if args.data_name == "ag":
- from src.config import config_ag as config
- target_label1 = ['0', '1', '2', '3']
- elif args.data_name == 'dbpedia':
- from src.config import config_db as config
- target_label1 = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13']
- elif args.data_name == 'yelp_p':
- from src.config import config_yelpp as config
- target_label1 = ['0', '1']
-
- context.set_context(
- mode=context.GRAPH_MODE,
- save_graphs=False,
- device_target="Ascend")
-
- class FastTextInferExportCell(nn.Cell):
- """
- Encapsulation class of FastText network infer.
-
- Args:
- network (nn.Cell): FastText model.
-
- Returns:
- Tuple[Tensor, Tensor], predicted_ids
- """
- def __init__(self, network):
- super(FastTextInferExportCell, self).__init__(auto_prefix=False)
- self.network = network
- self.argmax = P.ArgMaxWithValue(axis=1, keep_dims=True)
- self.log_softmax = nn.LogSoftmax(axis=1)
-
- def construct(self, src_tokens, src_tokens_lengths):
- """construct fasttext infer cell"""
- prediction = self.network(src_tokens, src_tokens_lengths)
- predicted_idx = self.log_softmax(prediction)
- predicted_idx, _ = self.argmax(predicted_idx)
-
- return predicted_idx
-
- def run_fasttext_export():
- """export function"""
- fasttext_model = FastText(config.vocab_size, config.embedding_dims, config.num_class)
- parameter_dict = load_checkpoint(args.ckpt_file)
- load_param_into_net(fasttext_model, parameter_dict)
- ft_infer = FastTextInferExportCell(fasttext_model)
-
- if args.data_name == "ag":
- src_tokens_shape = [config.batch_size, 467]
- src_tokens_length_shape = [config.batch_size, 1]
- elif args.data_name == 'dbpedia':
- src_tokens_shape = [config.batch_size, 1120]
- src_tokens_length_shape = [config.batch_size, 1]
- elif args.data_name == 'yelp_p':
- src_tokens_shape = [config.batch_size, 2955]
- src_tokens_length_shape = [config.batch_size, 1]
-
- file_name = args.file_name + '_' + args.data_name
- src_tokens = Tensor(np.ones((src_tokens_shape)).astype(np.int32))
- src_tokens_length = Tensor(np.ones((src_tokens_length_shape)).astype(np.int32))
- export(ft_infer, src_tokens, src_tokens_length, file_name=file_name, file_format=args.file_format)
-
- if __name__ == '__main__':
- run_fasttext_export()
|