|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """export checkpoint file into models"""
- import argparse
- import numpy as np
-
- from mindspore import Tensor, context
- import mindspore.common.dtype as mstype
- from mindspore.train.serialization import load_checkpoint, export
-
- from src.vgg import vgg16
-
- parser = argparse.ArgumentParser(description='VGG16 export')
- parser.add_argument("--device_id", type=int, default=0, help="Device id")
- parser.add_argument('--dataset', type=str, choices=["cifar10", "imagenet2012"], default="cifar10", help='ckpt file')
- parser.add_argument('--ckpt_file', type=str, required=True, help='vgg16 ckpt file.')
- parser.add_argument('--file_name', type=str, default='vgg16', help='vgg16 output file name.')
- parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
- parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
- help="device target")
- args = parser.parse_args()
-
- if args.dataset == "cifar10":
- from src.config import cifar_cfg as cfg
- else:
- from src.config import imagenet_cfg as cfg
-
- args.num_classes = cfg.num_classes
- args.pad_mode = cfg.pad_mode
- args.padding = cfg.padding
- args.has_bias = cfg.has_bias
- args.initialize_mode = cfg.initialize_mode
- args.batch_norm = cfg.batch_norm
- args.has_dropout = cfg.has_dropout
- args.image_size = list(map(int, cfg.image_size.split(',')))
-
- context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
- if args.device_target == "Ascend":
- context.set_context(device_id=args.device_id)
-
- if __name__ == '__main__':
- if args.dataset == "cifar10":
- net = vgg16(num_classes=args.num_classes, args=args)
- else:
- net = vgg16(args.num_classes, args, phase="test")
- net.add_flags_recursive(fp16=True)
-
- load_checkpoint(args.ckpt_file, net=net)
- net.set_train(False)
-
- input_data = Tensor(np.zeros([cfg.batch_size, 3, args.image_size[0], args.image_size[1]]), mstype.float32)
-
- export(net, input_data, file_name=args.file_name, file_format=args.file_format)
|