You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

export.py 2.7 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """export checkpoint file into models"""
  16. import argparse
  17. import numpy as np
  18. from mindspore import Tensor, context
  19. import mindspore.common.dtype as mstype
  20. from mindspore.train.serialization import load_checkpoint, export
  21. from src.vgg import vgg16
  22. parser = argparse.ArgumentParser(description='VGG16 export')
  23. parser.add_argument("--device_id", type=int, default=0, help="Device id")
  24. parser.add_argument('--dataset', type=str, choices=["cifar10", "imagenet2012"], default="cifar10", help='ckpt file')
  25. parser.add_argument('--ckpt_file', type=str, required=True, help='vgg16 ckpt file.')
  26. parser.add_argument('--file_name', type=str, default='vgg16', help='vgg16 output file name.')
  27. parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
  28. parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
  29. help="device target")
  30. args = parser.parse_args()
  31. if args.dataset == "cifar10":
  32. from src.config import cifar_cfg as cfg
  33. else:
  34. from src.config import imagenet_cfg as cfg
  35. args.num_classes = cfg.num_classes
  36. args.pad_mode = cfg.pad_mode
  37. args.padding = cfg.padding
  38. args.has_bias = cfg.has_bias
  39. args.initialize_mode = cfg.initialize_mode
  40. args.batch_norm = cfg.batch_norm
  41. args.has_dropout = cfg.has_dropout
  42. args.image_size = list(map(int, cfg.image_size.split(',')))
  43. context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
  44. if args.device_target == "Ascend":
  45. context.set_context(device_id=args.device_id)
  46. if __name__ == '__main__':
  47. if args.dataset == "cifar10":
  48. net = vgg16(num_classes=args.num_classes, args=args)
  49. else:
  50. net = vgg16(args.num_classes, args, phase="test")
  51. net.add_flags_recursive(fp16=True)
  52. load_checkpoint(args.ckpt_file, net=net)
  53. net.set_train(False)
  54. input_data = Tensor(np.zeros([cfg.batch_size, 3, args.image_size[0], args.image_size[1]]), mstype.float32)
  55. export(net, input_data, file_name=args.file_name, file_format=args.file_format)