You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

export.py 2.9 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import argparse
  16. import numpy as np
  17. from mindspore import Tensor, export, load_checkpoint, load_param_into_net, context
  18. from src.unet_medical.unet_model import UNetMedical
  19. from src.unet_nested import NestedUNet, UNet
  20. from src.config import cfg_unet as cfg
  21. parser = argparse.ArgumentParser(description='unet export')
  22. parser.add_argument("--device_id", type=int, default=0, help="Device id")
  23. parser.add_argument("--batch_size", type=int, default=1, help="batch size")
  24. parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
  25. parser.add_argument('--width', type=int, default=572, help='input width')
  26. parser.add_argument('--height', type=int, default=572, help='input height')
  27. parser.add_argument("--file_name", type=str, default="unet", help="output file name.")
  28. parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
  29. parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
  30. help="device target")
  31. args = parser.parse_args()
  32. context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
  33. if args.device_target == "Ascend":
  34. context.set_context(device_id=args.device_id)
  35. if __name__ == "__main__":
  36. if cfg['model'] == 'unet_medical':
  37. net = UNetMedical(n_channels=cfg['num_channels'], n_classes=cfg['num_classes'])
  38. elif cfg['model'] == 'unet_nested':
  39. net = NestedUNet(in_channel=cfg['num_channels'], n_class=cfg['num_classes'], use_deconv=cfg['use_deconv'],
  40. use_bn=cfg['use_bn'], use_ds=False)
  41. elif cfg['model'] == 'unet_simple':
  42. net = UNet(in_channel=cfg['num_channels'], n_class=cfg['num_classes'])
  43. else:
  44. raise ValueError("Unsupported model: {}".format(cfg['model']))
  45. # return a parameter dict for model
  46. param_dict = load_checkpoint(args.ckpt_file)
  47. # load the parameter into net
  48. load_param_into_net(net, param_dict)
  49. input_data = Tensor(np.ones([args.batch_size, cfg["num_channels"], args.height, args.width]).astype(np.float32))
  50. export(net, input_data, file_name=args.file_name, file_format=args.file_format)