|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296 |
- # Contents
-
- - [FCN 介绍](#FCN-介绍)
- - [模型架构](#模型架构)
- - [数据集](#数据集)
- - [环境要求](#环境要求)
- - [快速开始](#快速开始)
- - [脚本介绍](#脚本介绍)
- - [脚本以及简单代码](#脚本以及简单代码)
- - [脚本参数](#脚本参数)
- - [训练步骤](#训练步骤)
- - [训练](#训练)
- - [评估步骤](#评估步骤)
- - [评估](#评估)
- - [模型介绍](#模型介绍)
- - [性能](#性能)
- - [评估性能](#评估性能)
- - [如何使用](#如何使用)
- - [教程](#教程)
- - [随机事件介绍](#随机事件介绍)
- - [ModelZoo 主页](#ModelZoo-主页)
-
- # [FCN 介绍](#contents)
-
- FCN主要用用于图像分割领域,是一种端到端的分割方法。FCN丢弃了全连接层,使得其能够处理任意大小的图像,且减少了模型的参数量,提高了模型的分割速度。FCN在编码部分使用了VGG的结构,在解码部分中使用反卷积/上采样操作恢复图像的分辨率。FCN-8s最后使用8倍的反卷积/上采样操作将输出分割图恢复到与输入图像相同大小。
-
- [Paper]: Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.
-
- # [模型架构](#contents)
-
- FCN-8s使用丢弃全连接操作的VGG16作为编码部分,并分别融合VGG16中第3,4,5个池化层特征,最后使用stride=8的反卷积获得分割图像。
-
- # [数据集](#contents)
-
- Dataset used:
-
- [PASCAL VOC 2012](<http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html>)
-
- [SBD](<http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/semantic_contours/benchmark.tgz>)
-
- # [环境要求](#contents)
-
- - 硬件(Ascend/GPU)
- - 需要准备具有Ascend或GPU处理能力的硬件环境. 如需使用Ascend,可以发送 [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) 到ascend@huawei.com。一旦批准,你就可以使用此资源
- - 框架
- - [MindSpore](https://www.mindspore.cn/install/en)
- - 如需获取更多信息,请查看如下链接:
- - [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
-
- # [快速开始](#contents)
-
- 在通过官方网站安装MindSpore之后,你可以通过如下步骤开始训练以及评估:
-
- - running on Ascend with default parameters
-
- ```python
- # run training example
- python train.py --device_id device_id
-
- # run evaluation example with default parameters
- python eval.py --device_id device_id
- ```
-
- # [脚本介绍](#contents)
-
- ## [脚本以及简单代码](#contents)
-
- ```python
- ├── model_zoo
- ├── README.md // descriptions about all the models
- ├── FCN8s
- ├── README.md // descriptions about FCN
- ├── scripts
- ├── run_train.sh
- ├── run_eval.sh
- ├── build_data.sh
- ├── src
- │ ├──data
- │ ├──build_seg_data.py // creating dataset
- │ ├──dataset.py // loading dataset
- │ ├──nets
- │ ├──FCN8s.py // FCN-8s architecture
- │ ├──loss
- │ ├──loss.py // loss function
- │ ├──utils
- │ ├──lr_scheduler.py // getting learning_rateFCN-8s
- ├── train.py // training script
- ├── eval.py // evaluation script
- ```
-
- ## [脚本参数](#contents)
-
- 训练以及评估的参数可以在config.py中设置
-
- - config for FCN8s
-
- ```python
- # dataset
- 'data_file': '/data/workspace/mindspore_dataset/FCN/FCN/dataset/MINDRECORED_NAME.mindrecord', # path and name of one mindrecord file
- 'batch_size': 32,
- 'crop_size': 512,
- 'image_mean': [103.53, 116.28, 123.675],
- 'image_std': [57.375, 57.120, 58.395],
- 'min_scale': 0.5,
- 'max_scale': 2.0,
- 'ignore_label': 255,
- 'num_classes': 21,
-
- # optimizer
- 'train_epochs': 500,
- 'base_lr': 0.015,
- 'loss_scale': 1024.0,
-
- # model
- 'model': 'FCN8s',
- 'ckpt_vgg16': '/data/workspace/mindspore_dataset/FCN/FCN/model/0-150_5004.ckpt',
- 'ckpt_pre_trained': '/data/workspace/mindspore_dataset/FCN/FCN/model_new/FCN8s-500_82.ckpt',
-
- # train
- 'save_steps': 330,
- 'keep_checkpoint_max': 500,
- 'train_dir': '/data/workspace/mindspore_dataset/FCN/FCN/model_new/',
- ```
-
- 如需获取更多信息,请查看`config.py`.
-
- ## [生成数据步骤](#contents)
-
- ### 训练数据
-
- - build mindrecord training data
-
- ```python
- sh build_data.sh
- or
- python src/data/build_seg_data.py --data_root=/home/sun/data/Mindspore/benchmark_RELEASE/dataset \
- --data_lst=/home/sun/data/Mindspore/benchmark_RELEASE/dataset/trainaug.txt \
- --dst_path=dataset/MINDRECORED_NAME.mindrecord \
- --num_shards=1 \
- --shuffle=True
- data_root: 训练数据集的总目录包含两个子目录img和cls_png,img目录下存放训练图像,cls_png目录下存放标签mask图像,
- data_lst: 存放训练样本的名称列表文档,每行一个样本。
- dst_path: 生成mindrecord数据的目标位置
- ```
-
- ## [训练步骤](#contents)
-
- ### 训练
-
- - running on Ascend with default parameters
-
- ```python
- python train.py --device_id device_id
- ```
-
- 训练时,训练过程中的epch和step以及此时的loss和精确度会呈现在终端上:
-
- ```python
- epoch: * step: **, loss is ****
- ...
- ```
-
- 此模型的checkpoint会在默认路径下存储
-
- ## [评估步骤](#contents)
-
- ### 评估
-
- - 在Ascend上使用PASCAL VOC 2012 验证集进行评估
-
- 在使用命令运行前,请检查用于评估的checkpoint的路径。请设置路径为到checkpoint的绝对路径,如 "/data/workspace/mindspore_dataset/FCN/FCN/model_new/FCN8s-500_82.ckpt"。
-
- ```python
- python eval.py
- ```
-
- 以上的python命令会在终端上运行,你可以在终端上查看此次评估的结果。测试集的精确度会以如下方式呈现:
-
- ```python
- mean IoU 0.6467
- ```
-
- # [模型介绍](#contents)
-
- ## [性能](#contents)
-
- ### 评估性能
-
- #### FCN8s on PASCAL VOC 2012
-
- | Parameters | Ascend
- | -------------------------- | -----------------------------------------------------------
- | Model Version | FCN-8s
- | Resource | Ascend 910 ;CPU 2.60GHz,192cores;Memory,755G
- | uploaded Date | 12/30/2020 (month/day/year)
- | MindSpore Version | 1.1.0-alpha
- | Dataset | PASCAL VOC 2012 and SBD
- | Training Parameters | epoch=500, steps=330, batch_size = 32, lr=0.015
- | Optimizer | Momentum
- | Loss Function | Softmax Cross Entropy
- | outputs | probability
- | Loss | 0.038
- | Speed | 1pc: 564.652 ms/step;
- | Scripts | [FCN script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/FCN8s)
-
- ### Inference Performance
-
- #### FCN8s on PASCAL VOC
-
- | Parameters | Ascend
- | ------------------- | ---------------------------
- | Model Version | FCN-8s
- | Resource | Ascend 910
- | Uploaded Date | 10/29/2020 (month/day/year)
- | MindSpore Version | 1.1.0-alpha
- | Dataset | PASCAL VOC 2012
- | batch_size | 16
- | outputs | probability
- | mean IoU | 64.67
-
- ## [如何使用](#contents)
-
- ### 教程
-
- 如果你需要在不同硬件平台(如GPU,Ascend 910 或者 Ascend 310)使用训练好的模型,你可以参考这个 [Link](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/migrate_3rd_scripts.html)。以下是一个简单例子的步骤介绍:
-
- - Running on Ascend
-
- ```
- # Set context
- context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, save_graphs=False)
- context.set_auto_parallel_context(device_num=device_num,parallel_mode=ParallelMode.DATA_PARALLEL)
- init()
-
- # Load dataset
- dataset = data_generator.SegDataset(image_mean=cfg.image_mean,
- image_std=cfg.image_std,
- data_file=cfg.data_file,
- batch_size=cfg.batch_size,
- crop_size=cfg.crop_size,
- max_scale=cfg.max_scale,
- min_scale=cfg.min_scale,
- ignore_label=cfg.ignore_label,
- num_classes=cfg.num_classes,
- num_readers=2,
- num_parallel_calls=4,
- shard_id=args.rank,
- shard_num=args.group_size)
- dataset = dataset.get_dataset(repeat=1)
-
- # Define model
- net = FCN8s(n_class=cfg.num_classes)
- loss_ = loss.SoftmaxCrossEntropyLoss(cfg.num_classes, cfg.ignore_label)
-
- # optimizer
- iters_per_epoch = dataset.get_dataset_size()
- total_train_steps = iters_per_epoch * cfg.train_epochs
-
- lr_scheduler = CosineAnnealingLR(cfg.base_lr,
- cfg.train_epochs,
- iters_per_epoch,
- cfg.train_epochs,
- warmup_epochs=0,
- eta_min=0)
- lr = Tensor(lr_scheduler.get_lr())
-
- # loss scale
- manager_loss_scale = FixedLossScaleManager(cfg.loss_scale, drop_overflow_update=False)
-
- optimizer = nn.Momentum(params=net.trainable_params(), learning_rate=lr, momentum=0.9, weight_decay=0.0001,
- loss_scale=cfg.loss_scale)
-
- model = Model(net, loss_fn=loss_, loss_scale_manager=manager_loss_scale, optimizer=optimizer, amp_level="O3")
-
- # callback for saving ckpts
- time_cb = TimeMonitor(data_size=iters_per_epoch)
- loss_cb = LossMonitor()
- cbs = [time_cb, loss_cb]
-
- if args.rank == 0:
- config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_steps,
- keep_checkpoint_max=cfg.keep_checkpoint_max)
- ckpoint_cb = ModelCheckpoint(prefix=cfg.model, directory=cfg.train_dir, config=config_ck)
- cbs.append(ckpoint_cb)
-
- model.train(cfg.train_epochs, dataset, callbacks=cbs)
-
- # [随机事件介绍](#contents)
-
- 我们在train.py中设置了随机种子
-
- # [ModelZoo 主页](#contents)
-
- 请查看官方网站 [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
-
|