You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 5.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train imagenet."""
  16. import argparse
  17. import os
  18. import random
  19. import numpy as np
  20. from mindspore import Tensor
  21. from mindspore import context
  22. from mindspore import ParallelMode
  23. from mindspore.communication.management import init, get_rank, get_group_size
  24. from mindspore.nn.optim.rmsprop import RMSProp
  25. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
  26. from mindspore.train.model import Model
  27. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  28. from mindspore import dataset as de
  29. from src.config import nasnet_a_mobile_config_gpu as cfg
  30. from src.dataset import create_dataset
  31. from src.nasnet_a_mobile import NASNetAMobileWithLoss, NASNetAMobileTrainOneStepWithClipGradient
  32. from src.lr_generator import get_lr
  33. random.seed(cfg.random_seed)
  34. np.random.seed(cfg.random_seed)
  35. de.config.set_seed(cfg.random_seed)
  36. if __name__ == '__main__':
  37. parser = argparse.ArgumentParser(description='image classification training')
  38. parser.add_argument('--dataset_path', type=str, default='', help='Dataset path')
  39. parser.add_argument('--resume', type=str, default='', help='resume training with existed checkpoint')
  40. parser.add_argument('--is_distributed', action='store_true', default=False,
  41. help='distributed training')
  42. parser.add_argument('--platform', type=str, default='GPU', choices=('Ascend', 'GPU'), help='run platform')
  43. args_opt = parser.parse_args()
  44. context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.platform, save_graphs=False)
  45. if os.getenv('DEVICE_ID', "not_set").isdigit():
  46. context.set_context(device_id=int(os.getenv('DEVICE_ID')))
  47. # init distributed
  48. if args_opt.is_distributed:
  49. if args_opt.platform == "Ascend":
  50. init()
  51. else:
  52. init("nccl")
  53. cfg.rank = get_rank()
  54. cfg.group_size = get_group_size()
  55. parallel_mode = ParallelMode.DATA_PARALLEL
  56. context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=cfg.group_size,
  57. parameter_broadcast=True, mirror_mean=True)
  58. else:
  59. cfg.rank = 0
  60. cfg.group_size = 1
  61. # dataloader
  62. dataset = create_dataset(args_opt.dataset_path, cfg, True)
  63. batches_per_epoch = dataset.get_dataset_size()
  64. # network
  65. net_with_loss = NASNetAMobileWithLoss(cfg)
  66. if args_opt.resume:
  67. ckpt = load_checkpoint(args_opt.resume)
  68. load_param_into_net(net_with_loss, ckpt)
  69. # learning rate schedule
  70. lr = get_lr(lr_init=cfg.lr_init, lr_decay_rate=cfg.lr_decay_rate,
  71. num_epoch_per_decay=cfg.num_epoch_per_decay, total_epochs=cfg.epoch_size,
  72. steps_per_epoch=batches_per_epoch, is_stair=True)
  73. lr = Tensor(lr)
  74. # optimizer
  75. decayed_params = []
  76. no_decayed_params = []
  77. for param in net_with_loss.trainable_params():
  78. if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
  79. decayed_params.append(param)
  80. else:
  81. no_decayed_params.append(param)
  82. group_params = [{'params': decayed_params, 'weight_decay': cfg.weight_decay},
  83. {'params': no_decayed_params},
  84. {'order_params': net_with_loss.trainable_params()}]
  85. optimizer = RMSProp(group_params, lr, decay=cfg.rmsprop_decay, weight_decay=cfg.weight_decay,
  86. momentum=cfg.momentum, epsilon=cfg.opt_eps, loss_scale=cfg.loss_scale)
  87. net_with_grads = NASNetAMobileTrainOneStepWithClipGradient(net_with_loss, optimizer)
  88. net_with_grads.set_train()
  89. model = Model(net_with_grads)
  90. print("============== Starting Training ==============")
  91. loss_cb = LossMonitor(per_print_times=batches_per_epoch)
  92. time_cb = TimeMonitor(data_size=batches_per_epoch)
  93. callbacks = [loss_cb, time_cb]
  94. config_ck = CheckpointConfig(save_checkpoint_steps=batches_per_epoch, keep_checkpoint_max=cfg.keep_checkpoint_max)
  95. ckpoint_cb = ModelCheckpoint(prefix=f"nasnet-a-mobile-rank{cfg.rank}", directory=cfg.ckpt_path, config=config_ck)
  96. if args_opt.is_distributed & cfg.is_save_on_master:
  97. if cfg.rank == 0:
  98. callbacks.append(ckpoint_cb)
  99. model.train(cfg.epoch_size, dataset, callbacks=callbacks, dataset_sink_mode=True)
  100. else:
  101. callbacks.append(ckpoint_cb)
  102. model.train(cfg.epoch_size, dataset, callbacks=callbacks, dataset_sink_mode=True)
  103. print("train success")