You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_rmsprop.py 6.1 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.ops import operations as P
  21. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  22. class NetRMSProp(nn.Cell):
  23. def __init__(self, use_centered):
  24. super(NetRMSProp, self).__init__()
  25. self.use_centered = use_centered
  26. if use_centered:
  27. self.rms_opt = P.ApplyCenteredRMSProp()
  28. else:
  29. self.rms_opt = P.ApplyRMSProp()
  30. def construct(self, var, g, mg, rms, mom, lr, decay, momentum, epsilon):
  31. if self.use_centered:
  32. return self.rms_opt(var, mg, rms, mom, g, lr, decay, momentum, epsilon)
  33. else:
  34. return self.rms_opt(var, rms, mom, lr, g, decay, momentum, epsilon)
  35. def rmsprop_numpy(variable, gradients, mean_square, moment,
  36. learning_rate, decay, momentum, epsilon):
  37. mean_square = mean_square * decay + (1.0 - decay) * gradients * gradients
  38. moment = momentum * moment + learning_rate / np.sqrt(mean_square + epsilon) * gradients
  39. variable = variable - moment
  40. def rmspropcented_numpy(variable, gradients, mean_gradients, mean_square, moment,
  41. learning_rate, decay, momentum, epsilon):
  42. mean_gradients = mean_gradients * decay + (1.0 - decay) * gradients
  43. mean_square = mean_square * decay + (1.0 - decay) * gradients * gradients
  44. moment = momentum * moment + learning_rate / np.sqrt(
  45. mean_square - mean_gradients * mean_gradients + epsilon) * gradients
  46. variable = variable - moment
  47. @pytest.mark.level0
  48. @pytest.mark.platform_x86_gpu_training
  49. @pytest.mark.env_onecard
  50. def test_rmsprop():
  51. learning_rate, decay, momentum, epsilon, centered = [0.5, 0.8, 0.9, 1e-3, True]
  52. variable_np = np.array([1.0, 2.0], dtype=np.float32)
  53. gradients_np = np.array([0.1, 0.2], dtype=np.float32)
  54. mean_gradients_np = np.array([0.0, 0.0], dtype=np.float32)
  55. mean_square_np = np.array([epsilon, epsilon], dtype=np.float32)
  56. moment_np = np.array([0.0, 0.0], dtype=np.float32)
  57. variable_ms = Tensor(variable_np)
  58. gradients_ms = Tensor(gradients_np)
  59. mean_gradients_ms = Tensor(mean_gradients_np)
  60. mean_square_ms = Tensor(mean_square_np)
  61. moment_ms = Tensor(moment_np)
  62. if centered:
  63. rmspropcented_numpy(variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np,
  64. learning_rate, decay, momentum, epsilon)
  65. else:
  66. rmsprop_numpy(variable_np, gradients_np, mean_square_np, moment_np,
  67. learning_rate, decay, momentum, epsilon)
  68. net = NetRMSProp(centered)
  69. _ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms,
  70. moment_ms, learning_rate, decay, momentum, epsilon)
  71. error = np.ones(shape=variable_np.shape) * 10e-6
  72. diff = variable_ms.asnumpy() - variable_np
  73. assert np.all(diff < error)
  74. error = np.ones(shape=gradients_np.shape) * 10e-6
  75. diff = gradients_ms.asnumpy() - gradients_np
  76. assert np.all(diff < error)
  77. error = np.ones(shape=mean_gradients_np.shape) * 10e-6
  78. diff = mean_gradients_ms.asnumpy() - mean_gradients_np
  79. assert np.all(diff < error)
  80. error = np.ones(shape=mean_square_np.shape) * 10e-6
  81. diff = mean_square_ms.asnumpy() - mean_square_np
  82. assert np.all(diff < error)
  83. error = np.ones(shape=moment_np.shape) * 10e-6
  84. diff = moment_ms.asnumpy() - moment_np
  85. assert np.all(diff < error)
  86. @pytest.mark.level0
  87. @pytest.mark.platform_x86_gpu_training
  88. @pytest.mark.env_onecard
  89. def test_rmspropcenter():
  90. learning_rate, decay, momentum, epsilon, centered = [0.1, 0.3, 0.9, 1.0, False]
  91. variable_np = np.array([1.0, 2.0], dtype=np.float32)
  92. gradients_np = np.array([0.1, 0.2], dtype=np.float32)
  93. mean_gradients_np = np.array([0.0, 0.0], dtype=np.float32)
  94. mean_square_np = np.array([epsilon, epsilon], dtype=np.float32)
  95. moment_np = np.array([0.0, 0.0], dtype=np.float32)
  96. variable_ms = Tensor(variable_np)
  97. gradients_ms = Tensor(gradients_np)
  98. mean_gradients_ms = Tensor(mean_gradients_np)
  99. mean_square_ms = Tensor(mean_square_np)
  100. moment_ms = Tensor(moment_np)
  101. if centered:
  102. rmspropcented_numpy(variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np,
  103. learning_rate, decay, momentum, epsilon)
  104. else:
  105. rmsprop_numpy(variable_np, gradients_np, mean_square_np, moment_np,
  106. learning_rate, decay, momentum, epsilon)
  107. net = NetRMSProp(centered)
  108. _ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms,
  109. learning_rate, decay, momentum, epsilon)
  110. error = np.ones(shape=variable_np.shape) * 10e-6
  111. diff = variable_ms.asnumpy() - variable_np
  112. assert np.all(diff < error)
  113. error = np.ones(shape=gradients_np.shape) * 10e-6
  114. diff = gradients_ms.asnumpy() - gradients_np
  115. assert np.all(diff < error)
  116. error = np.ones(shape=mean_gradients_np.shape) * 10e-6
  117. diff = mean_gradients_ms.asnumpy() - mean_gradients_np
  118. assert np.all(diff < error)
  119. error = np.ones(shape=mean_square_np.shape) * 10e-6
  120. diff = mean_square_ms.asnumpy() - mean_square_np
  121. assert np.all(diff < error)
  122. error = np.ones(shape=moment_np.shape) * 10e-6
  123. diff = moment_ms.asnumpy() - moment_np
  124. assert np.all(diff < error)