You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 5.2 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train."""
  16. import argparse
  17. from mindspore import context
  18. from mindspore.communication.management import init
  19. from mindspore.nn.optim.momentum import Momentum
  20. from mindspore import Model, ParallelMode
  21. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  22. from mindspore.train.callback import Callback, CheckpointConfig, ModelCheckpoint, TimeMonitor
  23. from src.md_dataset import create_dataset
  24. from src.losses import OhemLoss
  25. from src.deeplabv3 import deeplabv3_resnet50
  26. from src.config import config
  27. parser = argparse.ArgumentParser(description="Deeplabv3 training")
  28. parser.add_argument("--distribute", type=str, default="false", help="Run distribute, default is false.")
  29. parser.add_argument('--epoch_size', type=int, default=6, help='Epoch size.')
  30. parser.add_argument('--batch_size', type=int, default=2, help='Batch size.')
  31. parser.add_argument('--data_url', required=True, default=None, help='Train data url')
  32. parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
  33. parser.add_argument('--checkpoint_url', default=None, help='Checkpoint path')
  34. parser.add_argument("--enable_save_ckpt", type=str, default="true", help="Enable save checkpoint, default is true.")
  35. parser.add_argument("--save_checkpoint_steps", type=int, default=1000, help="Save checkpoint steps, default is 1000.")
  36. parser.add_argument("--save_checkpoint_num", type=int, default=1, help="Save checkpoint numbers, default is 1.")
  37. args_opt = parser.parse_args()
  38. print(args_opt)
  39. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
  40. class LossCallBack(Callback):
  41. """
  42. Monitor the loss in training.
  43. Note:
  44. if per_print_times is 0 do not print loss.
  45. Args:
  46. per_print_times (int): Print loss every times. Default: 1.
  47. """
  48. def __init__(self, per_print_times=1):
  49. super(LossCallBack, self).__init__()
  50. if not isinstance(per_print_times, int) or per_print_times < 0:
  51. raise ValueError("print_step must be int and >= 0")
  52. self._per_print_times = per_print_times
  53. def step_end(self, run_context):
  54. cb_params = run_context.original_args()
  55. print("epoch: {}, step: {}, outputs are {}".format(cb_params.cur_epoch_num, cb_params.cur_step_num,
  56. str(cb_params.net_outputs)))
  57. def model_fine_tune(flags, train_net, fix_weight_layer):
  58. checkpoint_path = flags.checkpoint_url
  59. if checkpoint_path is None:
  60. return
  61. param_dict = load_checkpoint(checkpoint_path)
  62. load_param_into_net(train_net, param_dict)
  63. for para in train_net.trainable_params():
  64. if fix_weight_layer in para.name:
  65. para.requires_grad = False
  66. if __name__ == "__main__":
  67. if args_opt.distribute == "true":
  68. context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True)
  69. init()
  70. args_opt.base_size = config.crop_size
  71. args_opt.crop_size = config.crop_size
  72. train_dataset = create_dataset(args_opt, args_opt.data_url, args_opt.epoch_size, args_opt.batch_size, usage="train")
  73. dataset_size = train_dataset.get_dataset_size()
  74. time_cb = TimeMonitor(data_size=dataset_size)
  75. callback = [time_cb, LossCallBack()]
  76. if args_opt.enable_save_ckpt == "true":
  77. config_ck = CheckpointConfig(save_checkpoint_steps=args_opt.save_checkpoint_steps,
  78. keep_checkpoint_max=args_opt.save_checkpoint_num)
  79. ckpoint_cb = ModelCheckpoint(prefix='checkpoint_deeplabv3', config=config_ck)
  80. callback.append(ckpoint_cb)
  81. net = deeplabv3_resnet50(config.seg_num_classes, [args_opt.batch_size, 3, args_opt.crop_size, args_opt.crop_size],
  82. infer_scale_sizes=config.eval_scales, atrous_rates=config.atrous_rates,
  83. decoder_output_stride=config.decoder_output_stride, output_stride=config.output_stride,
  84. fine_tune_batch_norm=config.fine_tune_batch_norm, image_pyramid=config.image_pyramid)
  85. net.set_train()
  86. model_fine_tune(args_opt, net, 'layer')
  87. loss = OhemLoss(config.seg_num_classes, config.ignore_label)
  88. opt = Momentum(filter(lambda x: 'beta' not in x.name and 'gamma' not in x.name and 'depth' not in x.name and 'bias' not in x.name, net.trainable_params()), learning_rate=config.learning_rate, momentum=config.momentum, weight_decay=config.weight_decay)
  89. model = Model(net, loss, opt)
  90. model.train(args_opt.epoch_size, train_dataset, callback)