|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- Testing RandomAffine op in DE
- """
- import numpy as np
- import mindspore.dataset as ds
- import mindspore.dataset.transforms.py_transforms
- import mindspore.dataset.vision.py_transforms as py_vision
- import mindspore.dataset.vision.c_transforms as c_vision
- from mindspore import log as logger
- from util import visualize_list, save_and_check_md5, \
- config_get_set_seed, config_get_set_num_parallel_workers
-
- GENERATE_GOLDEN = False
-
- DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
- SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
- MNIST_DATA_DIR = "../data/dataset/testMnistData"
-
-
- def test_random_affine_op(plot=False):
- """
- Test RandomAffine in python transformations
- """
- logger.info("test_random_affine_op")
- # define map operations
- transforms1 = [
- py_vision.Decode(),
- py_vision.RandomAffine(degrees=15, translate=(0.1, 0.1), scale=(0.9, 1.1)),
- py_vision.ToTensor()
- ]
- transform1 = mindspore.dataset.transforms.py_transforms.Compose(transforms1)
-
- transforms2 = [
- py_vision.Decode(),
- py_vision.ToTensor()
- ]
- transform2 = mindspore.dataset.transforms.py_transforms.Compose(transforms2)
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data1 = data1.map(operations=transform1, input_columns=["image"])
- # Second dataset
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data2 = data2.map(operations=transform2, input_columns=["image"])
-
- image_affine = []
- image_original = []
- for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
- data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
- image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
- image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
- image_affine.append(image1)
- image_original.append(image2)
- if plot:
- visualize_list(image_original, image_affine)
-
-
- def test_random_affine_op_c(plot=False):
- """
- Test RandomAffine in C transformations
- """
- logger.info("test_random_affine_op_c")
- # define map operations
- transforms1 = [
- c_vision.Decode(),
- c_vision.RandomAffine(degrees=0, translate=(0.5, 0.5, 0, 0))
- ]
-
- transforms2 = [
- c_vision.Decode()
- ]
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data1 = data1.map(operations=transforms1, input_columns=["image"])
- # Second dataset
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data2 = data2.map(operations=transforms2, input_columns=["image"])
-
- image_affine = []
- image_original = []
- for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
- data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
- image1 = item1["image"]
- image2 = item2["image"]
- image_affine.append(image1)
- image_original.append(image2)
- if plot:
- visualize_list(image_original, image_affine)
-
-
- def test_random_affine_md5():
- """
- Test RandomAffine with md5 comparison
- """
- logger.info("test_random_affine_md5")
- original_seed = config_get_set_seed(55)
- original_num_parallel_workers = config_get_set_num_parallel_workers(1)
- # define map operations
- transforms = [
- py_vision.Decode(),
- py_vision.RandomAffine(degrees=(-5, 15), translate=(0.1, 0.3),
- scale=(0.9, 1.1), shear=(-10, 10, -5, 5)),
- py_vision.ToTensor()
- ]
- transform = mindspore.dataset.transforms.py_transforms.Compose(transforms)
-
- # Generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data = data.map(operations=transform, input_columns=["image"])
-
- # check results with md5 comparison
- filename = "random_affine_01_result.npz"
- save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
-
- # Restore configuration
- ds.config.set_seed(original_seed)
- ds.config.set_num_parallel_workers((original_num_parallel_workers))
-
-
- def test_random_affine_c_md5():
- """
- Test RandomAffine C Op with md5 comparison
- """
- logger.info("test_random_affine_c_md5")
- original_seed = config_get_set_seed(1)
- original_num_parallel_workers = config_get_set_num_parallel_workers(1)
- # define map operations
- transforms = [
- c_vision.Decode(),
- c_vision.RandomAffine(degrees=(-5, 15), translate=(-0.1, 0.1, -0.3, 0.3),
- scale=(0.9, 1.1), shear=(-10, 10, -5, 5))
- ]
-
- # Generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data = data.map(operations=transforms, input_columns=["image"])
-
- # check results with md5 comparison
- filename = "random_affine_01_c_result.npz"
- save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
-
- # Restore configuration
- ds.config.set_seed(original_seed)
- ds.config.set_num_parallel_workers((original_num_parallel_workers))
-
-
- def test_random_affine_default_c_md5():
- """
- Test RandomAffine C Op (default params) with md5 comparison
- """
- logger.info("test_random_affine_default_c_md5")
- original_seed = config_get_set_seed(1)
- original_num_parallel_workers = config_get_set_num_parallel_workers(1)
- # define map operations
- transforms = [
- c_vision.Decode(),
- c_vision.RandomAffine(degrees=0)
- ]
-
- # Generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data = data.map(operations=transforms, input_columns=["image"])
-
- # check results with md5 comparison
- filename = "random_affine_01_default_c_result.npz"
- save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
-
- # Restore configuration
- ds.config.set_seed(original_seed)
- ds.config.set_num_parallel_workers((original_num_parallel_workers))
-
-
- def test_random_affine_py_exception_non_pil_images():
- """
- Test RandomAffine: input img is ndarray and not PIL, expected to raise RuntimeError
- """
- logger.info("test_random_affine_exception_negative_degrees")
- dataset = ds.MnistDataset(MNIST_DATA_DIR, num_samples=3, num_parallel_workers=3)
- try:
- transform = mindspore.dataset.transforms.py_transforms.Compose([py_vision.ToTensor(),
- py_vision.RandomAffine(degrees=(15, 15))])
- dataset = dataset.map(operations=transform, input_columns=["image"], num_parallel_workers=3)
- for _ in dataset.create_dict_iterator(num_epochs=1):
- pass
- except RuntimeError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert "Pillow image" in str(e)
-
-
- def test_random_affine_exception_negative_degrees():
- """
- Test RandomAffine: input degrees in negative, expected to raise ValueError
- """
- logger.info("test_random_affine_exception_negative_degrees")
- try:
- _ = py_vision.RandomAffine(degrees=-15)
- except ValueError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert str(e) == "Input degrees is not within the required interval of [0, 16777216]."
-
-
- def test_random_affine_exception_translation_range():
- """
- Test RandomAffine: translation value is not in [-1, 1], expected to raise ValueError
- """
- logger.info("test_random_affine_exception_translation_range")
- try:
- _ = c_vision.RandomAffine(degrees=15, translate=(0.1, 1.5))
- except ValueError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert str(e) == "Input translate at 1 is not within the required interval of [-1.0, 1.0]."
- logger.info("test_random_affine_exception_translation_range")
- try:
- _ = c_vision.RandomAffine(degrees=15, translate=(-2, 1.5))
- except ValueError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert str(e) == "Input translate at 0 is not within the required interval of [-1.0, 1.0]."
-
-
- def test_random_affine_exception_scale_value():
- """
- Test RandomAffine: scale is not valid, expected to raise ValueError
- """
- logger.info("test_random_affine_exception_scale_value")
- try:
- _ = py_vision.RandomAffine(degrees=15, scale=(0.0, 0.0))
- except ValueError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert str(e) == "Input scale[1] must be greater than 0."
-
- try:
- _ = py_vision.RandomAffine(degrees=15, scale=(2.0, 1.1))
- except ValueError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert str(e) == "Input scale[1] must be equal to or greater than scale[0]."
-
-
- def test_random_affine_exception_shear_value():
- """
- Test RandomAffine: shear is a number but is not positive, expected to raise ValueError
- """
- logger.info("test_random_affine_exception_shear_value")
- try:
- _ = py_vision.RandomAffine(degrees=15, shear=-5)
- except ValueError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert str(e) == "Input shear must be greater than 0."
-
- try:
- _ = py_vision.RandomAffine(degrees=15, shear=(5, 1))
- except ValueError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert str(e) == "Input shear[1] must be equal to or greater than shear[0]"
-
- try:
- _ = py_vision.RandomAffine(degrees=15, shear=(5, 1, 2, 8))
- except ValueError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert str(e) == "Input shear[1] must be equal to or greater than shear[0] and " \
- "shear[3] must be equal to or greater than shear[2]."
-
- try:
- _ = py_vision.RandomAffine(degrees=15, shear=(5, 9, 2, 1))
- except ValueError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert str(e) == "Input shear[1] must be equal to or greater than shear[0] and " \
- "shear[3] must be equal to or greater than shear[2]."
-
-
- def test_random_affine_exception_degrees_size():
- """
- Test RandomAffine: degrees is a list or tuple and its length is not 2,
- expected to raise TypeError
- """
- logger.info("test_random_affine_exception_degrees_size")
- try:
- _ = py_vision.RandomAffine(degrees=[15])
- except TypeError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert str(e) == "If degrees is a sequence, the length must be 2."
-
-
- def test_random_affine_exception_translate_size():
- """
- Test RandomAffine: translate is not list or a tuple of length 2,
- expected to raise TypeError
- """
- logger.info("test_random_affine_exception_translate_size")
- try:
- _ = py_vision.RandomAffine(degrees=15, translate=(0.1))
- except TypeError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert str(
- e) == "Argument translate with value 0.1 is not of type [<class 'list'>," \
- " <class 'tuple'>]."
-
-
- def test_random_affine_exception_scale_size():
- """
- Test RandomAffine: scale is not a list or tuple of length 2,
- expected to raise TypeError
- """
- logger.info("test_random_affine_exception_scale_size")
- try:
- _ = py_vision.RandomAffine(degrees=15, scale=(0.5))
- except TypeError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert str(e) == "Argument scale with value 0.5 is not of type [<class 'tuple'>," \
- " <class 'list'>]."
-
-
- def test_random_affine_exception_shear_size():
- """
- Test RandomAffine: shear is not a list or tuple of length 2 or 4,
- expected to raise TypeError
- """
- logger.info("test_random_affine_exception_shear_size")
- try:
- _ = py_vision.RandomAffine(degrees=15, shear=(-5, 5, 10))
- except TypeError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert str(e) == "shear must be of length 2 or 4."
-
-
- if __name__ == "__main__":
- test_random_affine_op(plot=True)
- test_random_affine_op_c(plot=True)
- test_random_affine_md5()
- test_random_affine_c_md5()
- test_random_affine_default_c_md5()
- test_random_affine_py_exception_non_pil_images()
- test_random_affine_exception_negative_degrees()
- test_random_affine_exception_translation_range()
- test_random_affine_exception_scale_value()
- test_random_affine_exception_shear_value()
- test_random_affine_exception_degrees_size()
- test_random_affine_exception_translate_size()
- test_random_affine_exception_scale_size()
- test_random_affine_exception_shear_size()
|