|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- import numpy as np
-
- import mindspore.dataset as ds
-
-
- # tests the construction of multiple ops from a single dataset.
- # map dataset with columns order arguments should produce a ProjectOp over MapOp
- # This test does not utilize the compiling passes at this time.
- def test_map_reorder0():
- def generator_mc(maxid=1):
- for _ in range(maxid):
- yield (np.array([0]), np.array([1]))
-
- # Generator -> Map
- data0 = ds.GeneratorDataset(generator_mc, ["col0", "col1"])
-
- data0 = data0.map(operations=(lambda x: x), input_columns="col0", output_columns="out",
- column_order=["col1", "out"])
-
- for item in data0.create_tuple_iterator(num_epochs=1, output_numpy=True): # each data is a dictionary
- assert item == [np.array(1), np.array(0)]
-
-
- # tests the construction of multiple ops from a single dataset.
- # map dataset with columns order arguments should produce a ProjectOp over MapOp
- # This test does not utilize the compiling passes at this time.
- def test_map_reorder1():
- def generator_mc(maxid=1):
- for _ in range(maxid):
- yield (np.array([0]), np.array([1]), np.array([2]))
-
- # Three map and zip
- data0 = ds.GeneratorDataset(generator_mc, ["a0", "a1", "a2"])
- data0 = data0.map(operations=(lambda x: x), input_columns="a0", column_order=["a2", "a1", "a0"])
- data1 = ds.GeneratorDataset(generator_mc, ["b0", "b1", "b2"])
- data1 = data1.map(operations=(lambda x: x), input_columns="b0", column_order=["b1", "b2", "b0"])
- data2 = ds.zip((data0, data1))
- data2 = data2.map(operations=(lambda x: x), input_columns="a0", column_order=["b2", "a2", "b1", "a1", "b0", "a0"])
-
- for item in data2.create_tuple_iterator(num_epochs=1, output_numpy=True):
- assert item == [np.array(2), np.array(2), np.array(1), np.array(1), np.array(0), np.array(0)]
-
-
- # tests the construction of multiple ops from a single dataset.
- # TFRecordDataset with global shuffle should produce a ShuffleOp over TfReaderOp.
- # This test does not utilize the compiling passes at this time.
- def test_shuffle():
- FILES = ["../data/dataset/testTFTestAllTypes/test.data"]
- SCHEMA_FILE = "../data/dataset/testTFTestAllTypes/datasetSchema.json"
-
- ds.config.set_seed(1)
- data1 = ds.TFRecordDataset(FILES, schema=SCHEMA_FILE, shuffle=ds.Shuffle.GLOBAL)
- data2 = ds.TFRecordDataset(FILES, schema=SCHEMA_FILE, shuffle=ds.Shuffle.FILES)
- data2 = data2.shuffle(10000)
-
- for d1, d2 in zip(data1.create_tuple_iterator(output_numpy=True), data2.create_tuple_iterator(output_numpy=True)):
- for t1, t2 in zip(d1, d2):
- np.testing.assert_array_equal(t1, t2)
-
- ds.config.set_seed(1)
- DATA_ALL_FILE = "../data/dataset/testTextFileDataset/*"
- data1 = ds.TextFileDataset(DATA_ALL_FILE, shuffle=ds.Shuffle.GLOBAL)
- data2 = ds.TextFileDataset(DATA_ALL_FILE, shuffle=ds.Shuffle.FILES)
- data2 = data2.shuffle(10000)
-
- for d1, d2 in zip(data1.create_tuple_iterator(output_numpy=True), data2.create_tuple_iterator(output_numpy=True)):
- for t1, t2 in zip(d1, d2):
- np.testing.assert_array_equal(t1, t2)
-
- ds.config.set_seed(1)
- TRAIN_FILE = '../data/dataset/testCLUE/afqmc/train.json'
- data1 = ds.CLUEDataset(TRAIN_FILE, task='AFQMC', usage='train', shuffle=ds.Shuffle.GLOBAL)
- data2 = ds.CLUEDataset(TRAIN_FILE, task='AFQMC', usage='train', shuffle=ds.Shuffle.FILES)
- data2 = data2.shuffle(10000)
-
- for d1, d2 in zip(data1.create_tuple_iterator(output_numpy=True), data2.create_tuple_iterator(output_numpy=True)):
- for t1, t2 in zip(d1, d2):
- np.testing.assert_array_equal(t1, t2)
-
-
- if __name__ == "__main__":
- test_map_reorder0()
- test_map_reorder1()
- test_global_shuffle()
|