|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108 |
- /**
- * Copyright 2020 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include <vector>
- #include <memory>
- #include "common/common_test.h"
- #include "ops/assert.h"
- #include "ir/dtype/type.h"
- #include "ir/value.h"
- #include "abstract/dshape.h"
- #include "utils/tensor_construct_utils.h"
-
- namespace mindspore {
- namespace ops {
-
- namespace {
- template <typename T>
- void SetTensorData(void *data, T num, size_t data_length) {
- MS_EXCEPTION_IF_NULL(data);
- auto tensor_data = reinterpret_cast<T *>(data);
- MS_EXCEPTION_IF_NULL(tensor_data);
- for (size_t index = 0; index < data_length; ++index) {
- *tensor_data = num;
- ++tensor_data;
- }
- }
- } // namespace
-
- class TestAssert : public UT::Common {
- public:
- TestAssert() {}
- void SetUp() {}
- void TearDown() {}
- };
-
- TEST_F(TestAssert, test_ops_assert1) {
- auto assert = std::make_shared<Assert>();
- assert->Init(3);
- EXPECT_EQ(assert->get_summarize(), 3);
- std::vector<ValuePtr> inputs_ = {TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{1})};
- auto condition = MakeValue(std::vector<bool>{true});
- auto inputs = std::make_shared<ValueTuple>(inputs_);
- auto abstract = assert->Infer({condition->ToAbstract(), inputs->ToAbstract()});
- MS_EXCEPTION_IF_NULL(abstract);
- EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
- auto shape_ptr = abstract->BuildShape();
- MS_EXCEPTION_IF_NULL(shape_ptr);
- EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
- auto shape = shape_ptr->cast<abstract::ShapePtr>();
- MS_EXCEPTION_IF_NULL(shape);
- auto shape_vec = shape->shape();
- EXPECT_EQ(shape_vec.size(), 1);
- EXPECT_EQ(shape_vec[0], 1);
- auto type = abstract->BuildType();
- MS_EXCEPTION_IF_NULL(type);
- EXPECT_EQ(type->isa<TensorType>(), true);
- auto tensor_type = type->cast<TensorTypePtr>();
- MS_EXCEPTION_IF_NULL(tensor_type);
- auto data_type = tensor_type->element();
- MS_EXCEPTION_IF_NULL(data_type);
- EXPECT_EQ(data_type->type_id(), kNumberTypeInt32);
- }
-
- TEST_F(TestAssert, test_ops_assert2) {
- auto assert = std::make_shared<Assert>();
- assert->Init(3);
- EXPECT_EQ(assert->get_summarize(), 3);
- std::vector<ValuePtr> inputs_ = {TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{1})};
- auto tensor = std::make_shared<tensor::Tensor>(kNumberTypeBool, std::vector<int64_t>{1});
- MS_EXCEPTION_IF_NULL(tensor);
- auto mem_size = IntToSize(tensor->ElementsNum());
- SetTensorData<bool>(tensor->data_c(), true, mem_size);
- auto inputs = std::make_shared<ValueTuple>(inputs_);
- auto abstract = assert->Infer({tensor->ToAbstract(), inputs->ToAbstract()});
- MS_EXCEPTION_IF_NULL(abstract);
- EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
- auto shape_ptr = abstract->BuildShape();
- MS_EXCEPTION_IF_NULL(shape_ptr);
- EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
- auto shape = shape_ptr->cast<abstract::ShapePtr>();
- MS_EXCEPTION_IF_NULL(shape);
- auto shape_vec = shape->shape();
- EXPECT_EQ(shape_vec.size(), 1);
- EXPECT_EQ(shape_vec[0], 1);
- auto type = abstract->BuildType();
- MS_EXCEPTION_IF_NULL(type);
- EXPECT_EQ(type->isa<TensorType>(), true);
- auto tensor_type = type->cast<TensorTypePtr>();
- MS_EXCEPTION_IF_NULL(tensor_type);
- auto data_type = tensor_type->element();
- MS_EXCEPTION_IF_NULL(data_type);
- EXPECT_EQ(data_type->type_id(), kNumberTypeInt32);
- }
-
- } // namespace ops
- } // namespace mindspore
|