|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- from mindspore import Tensor, nn
- from mindspore.common import dtype as mstype
-
-
- class CaseNet(nn.Cell):
- def __init__(self):
- super(CaseNet, self).__init__()
- self.conv = nn.Conv2d(1, 1, 3)
- self.relu = nn.ReLU()
- self.relu1 = nn.ReLU()
- self.softmax = nn.Softmax()
- self.layers1 = (self.relu, self.softmax)
- self.layers2 = (self.conv, self.relu1)
-
- def construct(self, x, index1, index2):
- x = self.layers1[index1](x)
- x = self.layers2[index2](x)
- return x
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_switch_layer():
- context.set_context(mode=context.GRAPH_MODE)
- net = CaseNet()
- data = Tensor(np.ones((1, 1, 224, 224)), mstype.float32)
- idx = Tensor(0, mstype.int32)
- idx2 = Tensor(-1, mstype.int32)
- value = net(data, idx, idx2)
- relu = nn.ReLU()
- true_value = relu(data)
- ret = np.allclose(value.asnumpy(), true_value.asnumpy())
- assert ret
|