|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Test high order grad with respect to parameter first, then input."""
-
- import pytest
- import numpy as np
- import mindspore.nn as nn
- import mindspore.ops as ops
- from mindspore import Tensor, context
- from mindspore import ParameterTuple, Parameter
-
-
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.mul = ops.Mul()
- weight_np = np.array([2, 2]).astype(np.float32)
- self.weight = Parameter(Tensor(weight_np), name="weight", requires_grad=True)
-
- def construct(self, x):
- x_square = self.mul(x, x)
- x_square_z = self.mul(x_square, self.weight)
- output = self.mul(x_square_z, self.weight)
- return output
-
-
- class Grad(nn.Cell):
- def __init__(self, network):
- super(Grad, self).__init__()
- self.grad = ops.GradOperation(get_by_list=True, sens_param=False)
- self.network = network
- self.params = ParameterTuple(network.trainable_params())
-
- def construct(self, x):
- output = self.grad(self.network, self.params)(x)
- return output
-
-
- class GradSec(nn.Cell):
- def __init__(self, network):
- super(GradSec, self).__init__()
- self.grad = ops.GradOperation(get_all=True, sens_param=False)
- self.network = network
-
- def construct(self, x):
- output = self.grad(self.network)(x)
- return output
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_cpu_training
- @pytest.mark.env_onecard
- def test_sit_high_order_grad_params():
- context.set_context(mode=context.GRAPH_MODE)
- x = Tensor(np.array([1, 1]).astype(np.float32))
- net = Net()
- first_grad = Grad(net)
- second_grad = GradSec(first_grad)
- grad = second_grad(x)
- assert (grad[0].asnumpy() == np.array([8, 8])).all()
|