|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119 |
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Unit test on mindspore.explainer._utils."""
-
- import numpy as np
- import pytest
-
- import mindspore as ms
- import mindspore.nn as nn
-
- from mindspore.explainer._utils import (
- ForwardProbe,
- rank_pixels,
- retrieve_layer,
- retrieve_layer_by_name)
- from mindspore.explainer.explanation._attribution._backprop.backprop_utils import GradNet, get_bp_weights
-
-
- class CustomNet(nn.Cell):
- """Simple net for test."""
-
- def __init__(self):
- super(CustomNet, self).__init__()
- self.fc1 = nn.Dense(10, 10)
- self.fc2 = nn.Dense(10, 10)
- self.fc3 = nn.Dense(10, 10)
- self.fc4 = nn.Dense(10, 10)
-
- def construct(self, inputs):
- out = self.fc1(inputs)
- out = self.fc2(out)
- out = self.fc3(out)
- out = self.fc4(out)
- return out
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_rank_pixels():
- """Test on rank_pixels."""
- saliency = np.array([[4., 3., 1.], [5., 9., 1.]])
- descending_target = np.array([[0, 1, 2], [1, 0, 2]])
- ascending_target = np.array([[2, 1, 0], [1, 2, 0]])
- descending_rank = rank_pixels(saliency)
- ascending_rank = rank_pixels(saliency, descending=False)
- assert (descending_rank - descending_target).any() == 0
- assert (ascending_rank - ascending_target).any() == 0
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_retrieve_layer_by_name():
- """Test on rank_pixels."""
- model = CustomNet()
- target_layer_name = 'fc3'
- target_layer = retrieve_layer_by_name(model, target_layer_name)
-
- assert target_layer is model.fc3
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_retrieve_layer_by_name_no_name():
- """Test on retrieve layer."""
- model = CustomNet()
- target_layer = retrieve_layer_by_name(model, '')
-
- assert target_layer is model
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_forward_probe():
- """Test case for ForwardProbe."""
- model = CustomNet()
- model.set_grad()
- inputs = np.random.random((1, 10))
- inputs = ms.Tensor(inputs, ms.float32)
- gt_activation = model.fc3(model.fc2(model.fc1(inputs))).asnumpy()
-
- targets = 1
- weights = get_bp_weights(model, inputs, targets=targets)
-
- gradnet = GradNet(model)
- grad_before_probe = gradnet(inputs, weights).asnumpy()
-
- # Probe forward tensor
- saliency_layer = retrieve_layer(model, 'fc3')
-
- with ForwardProbe(saliency_layer) as probe:
- grad_after_probe = gradnet(inputs, weights).asnumpy()
- activation = probe.value.asnumpy()
-
- grad_after_unprobe = gradnet(inputs, weights).asnumpy()
-
- assert np.array_equal(gt_activation, activation)
- assert np.array_equal(grad_before_probe, grad_after_probe)
- assert np.array_equal(grad_before_probe, grad_after_unprobe)
- assert probe.value is None
|