|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226 |
- # Contents
-
- - [Thinking Path Re-Ranker](#thinking-path-re-ranker)
- - [Model Architecture](#model-architecture)
- - [Dataset](#dataset)
- - [Features](#features)
- - [Mixed Precision](#mixed-precision)
- - [Environment Requirements](#environment-requirements)
- - [Quick Start](#quick-start)
- - [Script Description](#script-description)
- - [Script and Sample Code](#script-and-sample-code)
- - [Script Parameters](#script-parameters)
- - [Training Process](#training-process)
- - [Training](#training)
- - [Evaluation Process](#evaluation-process)
- - [Evaluation](#evaluation)
- - [Model Description](#model-description)
- - [Performance](#performance)
- - [Description of random situation](#description-of-random-situation)
- - [ModelZoo Homepage](#modelzoo-homepage)
-
- # [Thinking Path Re-Ranker](#contents)
-
- Thinking Path Re-Ranker(TPRR) was proposed in 2021 by Huawei Poisson Lab & Parallel Distributed Computing Lab. By incorporating the
- retriever, reranker and reader modules, TPRR shows excellent performance on open-domain multi-hop question answering. Moreover, TPRR has won
- the first place in the current HotpotQA official leaderboard. This is a example of evaluation of TPRR with HotPotQA dataset in MindSpore. More
- importantly, this is the first open source version for TPRR.
-
- # [Model Architecture](#contents)
-
- Specially, TPRR contains three main modules. The first is retriever, which generate document sequences of each hop iteratively. The second
- is reranker for selecting the best path from candidate paths generated by retriever. The last one is reader for extracting answer spans.
-
- # [Dataset](#contents)
-
- The retriever dataset consists of three parts:
- Wikipedia data: the 2017 English Wikipedia dump version with bidirectional hyperlinks.
- dev data: HotPotQA full wiki setting dev data with 7398 question-answer pairs.
- dev tf-idf data: the candidates for each question in dev data which is originated from top-500 retrieved from 5M paragraphs of Wikipedia
- through TF-IDF.
- The dataset of re-ranker consists of two parts:
- Wikipedia data: the 2017 English Wikipedia dump version.
- dev data: HotPotQA full wiki setting dev data with 7398 question-answer pairs.
-
- # [Features](#contents)
-
- ## [Mixed Precision](#contents)
-
- To ultilize the strong computation power of Ascend chip, and accelerate the evaluation process, the mixed evaluation method is used. MindSpore
- is able to cope with FP32 inputs and FP16 operators. In TPRR example, the model is set to FP16 mode for the matmul calculation part.
-
- # [Environment Requirements](#contents)
-
- - Hardware (Ascend)
- - Framework
- - [MindSpore](https://www.mindspore.cn/install/en)
- - For more information, please check the resources below:
- - [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
-
- # [Quick Start](#contents)
-
- After installing MindSpore via the official website and Dataset is correctly generated, you can start training and evaluation as follows.
-
- - running on Ascend
-
- ```python
- # run evaluation example with HotPotQA dev dataset
- sh run_eval_ascend.sh
- sh run_eval_ascend_reranker_reader.sh
- ```
-
- # [Script Description](#contents)
-
- ## [Script and Sample Code](#contents)
-
- ```shell
- .
- └─tprr
- ├─README.md
- ├─scripts
- | ├─run_eval_ascend.sh # Launch retriever evaluation in ascend
- | └─run_eval_ascend_reranker_reader # Launch re-ranker and reader evaluation in ascend
- |
- ├─src
- | ├─build_reranker_data.py # build data for re-ranker from result of retriever
- | ├─config.py # Evaluation configurations for retriever
- | ├─hotpot_evaluate_v1.py # Hotpotqa evaluation script
- | ├─onehop.py # Onehop model of retriever
- | ├─onehop_bert.py # Onehop bert model of retriever
- | ├─process_data.py # Data preprocessing for retriever
- | ├─reader.py # Reader model
- | ├─reader_albert_xxlarge.py # Albert-xxlarge module of reader model
- | ├─reader_downstream.py # Downstream module of reader model
- | ├─reader_eval.py # Reader evaluation script
- | ├─rerank_albert_xxlarge.py # Albert-xxlarge module of re-ranker model
- | ├─rerank_and_reader_data_generator.py # Data generator for re-ranker and reader
- | ├─rerank_and_reader_utils.py # Utils for re-ranker and reader
- | ├─rerank_downstream.py # Downstream module of re-ranker model
- | ├─reranker.py # Re-ranker model
- | ├─reranker_eval.py # Re-ranker evaluation script
- | ├─twohop.py # Twohop model of retriever
- | ├─twohop_bert.py # Twohop bert model of retriever
- | └─utils.py # Utils for retriever
- |
- ├─retriever_eval.py # Evaluation net for retriever
- └─reranker_and_reader_eval.py # Evaluation net for re-ranker and reader
- ```
-
- ## [Script Parameters](#contents)
-
- Parameters for retriever evaluation can be set in config.py.
-
- - config for TPRR retriever
-
- ```python
- "q_len": 64, # Max query length
- "d_len": 192, # Max doc length
- "s_len": 448, # Max sequence length
- "in_len": 768, # Input dim
- "out_len": 1, # Output dim
- "num_docs": 500, # Num of docs
- "topk": 8, # Top k
- "onehop_num": 8 # Num of onehop doc as twohop neighbor
- ```
-
- config.py for more configuration.
-
- Parameters for re-ranker and reader evaluation can be passed directly at execution time.
-
- - parameters for TPRR re-ranker and reader
-
- ```python
- "seq_len": 512, # sequence length
- "rerank_batch_size": 32, # batch size for re-ranker evaluation
- "reader_batch_size": 448, # batch size for reader evaluation
- "sp_threshold": 8 # threshold for picking supporting sentence
- ```
-
- config.py for more configuration.
-
- ## [Evaluation Process](#contents)
-
- ### Evaluation
-
- - Retriever evaluation on Ascend
-
- ```python
- sh run_eval_ascend.sh
- ```
-
- Evaluation result will be stored in the scripts path, whose folder name begins with "eval_tr". You can find the result like the
- followings in log.
-
- ```python
- ###step###: 0
- val: 0
- count: 1
- true count: 0
- PEM: 0.0
-
- ...
- ###step###: 7396
- val:6796
- count:7397
- true count: 6924
- PEM: 0.9187508449371367
- true top8 PEM: 0.9815135759676488
- evaluation time (h): 20.155506462653477
- ```
-
- - Re-ranker and reader evaluation on Ascend
-
- Use the output of retriever as input of re-ranker
-
- ```python
- sh run_eval_ascend_reranker_reader.sh
- ```
-
- Evaluation result will be stored in the scripts path, whose folder name begins with "eval". You can find the result like the
- followings in log.
-
- ```python
- total top1 pem: 0.8803511141120864
-
- ...
- em: 0.67440918298447
- f1: 0.8025625656569652
- prec: 0.8292800393689271
- recall: 0.8136908451841731
- sp_em: 0.6009453072248481
- sp_f1: 0.844555664157302
- sp_prec: 0.8640844345841021
- sp_recall: 0.8446123918845106
- joint_em: 0.4537474679270763
- joint_f1: 0.715119580346802
- joint_prec: 0.7540052057184267
- joint_recall: 0.7250240424067661
- ```
-
- # [Model Description](#contents)
-
- ## [Performance](#contents)
-
- ### Inference Performance
-
- | Parameter | BGCF Ascend |
- | ------------------------------ | ---------------------------- |
- | Model Version | Inception V1 |
- | Resource | Ascend 910 |
- | uploaded Date | 03/12/2021(month/day/year) |
- | MindSpore Version | 1.2.0 |
- | Dataset | HotPotQA |
- | Batch_size | 1 |
- | Output | inference path |
- | PEM | 0.9188 |
- | total top1 pem | 0.88 |
- | joint_f1 | 0.7151 |
-
- # [Description of random situation](#contents)
-
- No random situation for evaluation.
-
- # [ModelZoo Homepage](#contents)
-
- Please check the official [homepage](http://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|