You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

export.py 2.2 kB

5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """export checkpoint file into air models"""
  16. import argparse
  17. import numpy as np
  18. from mindspore import Tensor, context, load_checkpoint, load_param_into_net, export
  19. from src.warpctc import StackedRNN
  20. from src.config import config
  21. parser = argparse.ArgumentParser(description="warpctc_export")
  22. parser.add_argument("--device_id", type=int, default=0, help="Device id")
  23. parser.add_argument("--ckpt_file", type=str, required=True, help="warpctc ckpt file.")
  24. parser.add_argument("--file_name", type=str, default="warpctc", help="warpctc output file name.")
  25. parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="MINDIR", help="file format")
  26. parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
  27. help="device target")
  28. args = parser.parse_args()
  29. context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
  30. if args.device_target == "Ascend":
  31. context.set_context(device_id=args.device_id)
  32. if __name__ == "__main__":
  33. captcha_width = config.captcha_width
  34. captcha_height = config.captcha_height
  35. batch_size = config.batch_size
  36. hidden_size = config.hidden_size
  37. net = StackedRNN(captcha_height * 3, batch_size, hidden_size)
  38. param_dict = load_checkpoint(args.ckpt_file)
  39. load_param_into_net(net, param_dict)
  40. net.set_train(False)
  41. image = Tensor(np.zeros([batch_size, 3, captcha_height, captcha_width], np.float16))
  42. export(net, image, file_name=args.file_name, file_format=args.file_format)