|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """test ShuffleNetV1"""
- import argparse
- import time
- from mindspore import context, nn
- from mindspore.train.model import Model
- from mindspore.common import set_seed
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from src.shufflenetv1 import ShuffleNetV1 as shufflenetv1
- from src.config import config
- from src.dataset import create_dataset
- from src.crossentropysmooth import CrossEntropySmooth
-
- set_seed(1)
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser(description='Image classification')
- parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
- parser.add_argument('--device_id', type=int, default=0, help='Device id')
- parser.add_argument('--checkpoint_path', type=str, default='', help='Checkpoint file path')
- parser.add_argument('--dataset_path', type=str, default='', help='Dataset path')
- parser.add_argument('--model_size', type=str, default='2.0x', help='ShuffleNetV1 model size',
- choices=['2.0x', '1.5x', '1.0x', '0.5x'])
- args_opt = parser.parse_args()
-
- context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, save_graphs=False,
- device_id=args_opt.device_id)
-
- # create dataset
- dataset = create_dataset(args_opt.dataset_path, do_train=False, device_num=1, rank=0)
- step_size = dataset.get_dataset_size()
-
- # define net
- net = shufflenetv1(model_size=args_opt.model_size)
-
- # load checkpoint
- param_dict = load_checkpoint(args_opt.checkpoint_path)
- load_param_into_net(net, param_dict)
- net.set_train(False)
-
- # define loss
- loss = CrossEntropySmooth(sparse=True, reduction="mean", smooth_factor=config.label_smooth_factor,
- num_classes=config.num_classes)
-
- # define model
- eval_metrics = {'Loss': nn.Loss(), 'Top_1_Acc': nn.Top1CategoricalAccuracy(),
- 'Top_5_Acc': nn.Top5CategoricalAccuracy()}
- model = Model(net, loss_fn=loss, metrics=eval_metrics)
-
- # eval model
- start_time = time.time()
- res = model.eval(dataset, dataset_sink_mode=True)
- log = "result:" + str(res) + ", ckpt:'" + args_opt.checkpoint_path + "', time: " + str(
- (time.time() - start_time) * 1000)
- print(log)
- filename = './eval_log.txt'
- with open(filename, 'a') as file_object:
- file_object.write(log + '\n')
|