You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

export.py 4.0 kB

4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778
  1. # Copyright 2020-2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. ##############export checkpoint file into air and onnx models#################
  17. python export.py
  18. """
  19. import argparse
  20. import numpy as np
  21. from mindspore import Tensor, load_checkpoint, load_param_into_net, export, context
  22. parser = argparse.ArgumentParser(description='resnet export')
  23. parser.add_argument('--network_dataset', type=str, default='resnet50_cifar10', choices=['resnet18_cifar10',
  24. 'resnet18_imagenet2012',
  25. 'resnet50_cifar10',
  26. 'resnet50_imagenet2012',
  27. 'resnet101_imagenet2012',
  28. "se-resnet50_imagenet2012"],
  29. help='network and dataset name.')
  30. parser.add_argument("--device_id", type=int, default=0, help="Device id")
  31. parser.add_argument("--batch_size", type=int, default=1, help="batch size")
  32. parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
  33. parser.add_argument("--file_name", type=str, default="resnet", help="output file name.")
  34. parser.add_argument('--width', type=int, default=224, help='input width')
  35. parser.add_argument('--height', type=int, default=224, help='input height')
  36. parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format")
  37. parser.add_argument("--device_target", type=str, default="Ascend",
  38. choices=["Ascend", "GPU", "CPU"], help="device target(default: Ascend)")
  39. args = parser.parse_args()
  40. context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
  41. if args.device_target == "Ascend":
  42. context.set_context(device_id=args.device_id)
  43. if __name__ == '__main__':
  44. if args.network_dataset == 'resnet18_cifar10':
  45. from src.config import config1 as config
  46. from src.resnet import resnet18 as resnet
  47. elif args.network_dataset == 'resnet18_imagenet2012':
  48. from src.config import config2 as config
  49. from src.resnet import resnet18 as resnet
  50. elif args.network_dataset == 'resnet50_cifar10':
  51. from src.config import config1 as config
  52. from src.resnet import resnet50 as resnet
  53. elif args.network_dataset == 'resnet50_imagenet2012':
  54. from src.config import config2 as config
  55. from src.resnet import resnet50 as resnet
  56. elif args.network_dataset == 'resnet101_imagenet2012':
  57. from src.config import config3 as config
  58. from src.resnet import resnet101 as resnet
  59. elif args.network_dataset == 'se-resnet50_imagenet2012':
  60. from src.config import config4 as config
  61. from src.resnet import se_resnet50 as resnet
  62. else:
  63. raise ValueError("network and dataset is not support.")
  64. net = resnet(config.class_num)
  65. assert args.ckpt_file is not None, "checkpoint_path is None."
  66. param_dict = load_checkpoint(args.ckpt_file)
  67. load_param_into_net(net, param_dict)
  68. input_arr = Tensor(np.zeros([args.batch_size, 3, args.height, args.width], np.float32))
  69. export(net, input_arr, file_name=args.file_name, file_format=args.file_format)